
PyTorch
文章平均质量分 89
PyTorch:由 Facebook 的 AI 研究团队开发,以动态计算图和灵活性著称,适合快速原型开发和研究。它支持 GPU 加速和混合精度训练,社区庞大,有大量的预训练模型和工具。
乔丹搞IT
理工男一枚,十多年的IT领域的开发经验。最早从事软件实施工作开始,到软件开发,到数据处理等工作。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
35,PyTorch 代码编写规范
在生产环境中,强化学习系统往往由数据管道、训练、评估、部署、监控五大模块组成,代码行数轻松破万。如果缺乏统一的编码规范,“跑通一次 demo” 与“长期可维护”之间就会出现断崖式断层。本章给出一份可在 30 min 内落地的 PyTorch 强化学习代码规范,覆盖目录结构、命名、类型注解、配置管理、日志与测试六大维度。所有规则均来自 5 个工业级案例的踩坑总结,并在中提供了 pre-commit、flake8、pyright、black 模板,可直接生效。原创 2025-07-23 20:39:58 · 852 阅读 · 0 评论 -
34,PyTorch 强化学习的应用案例
本章把前面 6 大算法族(A2C / PPO / DDPG / TD3 / SAC / SD-PPO)从“能跑”升级为“能落地”。镜像已集成 PyTorch 2.3 + TorchRL + Isaac Gym + CARLA,一条命令即可复现 5 个案例。从“跑通 CartPole”到“改变真实业务指标”,差距不在算法,而在。上线后:司机平均空驶里程下降 11 %,乘客应答率提升 6 %。实验结果:DAU 提升 4.7 %,次日留存 +1.8 %。结果:制冷能耗降低 13 %,热点事件 0 次。原创 2025-07-20 10:34:07 · 600 阅读 · 0 评论 -
33,PyTorch 常见强化学习算法介绍
每个算法给出:适用场景 → 核心公式 → PyTorch 关键实现片段 → 完整训练脚本路径。全部代码可在 GitHub一键复现。原创 2025-07-20 10:28:24 · 674 阅读 · 0 评论 -
32,PyTorch 强化学习的基本概念与框架
上一节我们完成了文本分类与机器翻译的端到端实现,本节把视角从「监督学习」切换到「强化学习(RL)」。我们将用纯 PyTorch 2.x 代码,从 0 到 1 搭建一个可运行的 RL 框架,核心围绕与两条主线。原创 2025-07-18 19:54:18 · 860 阅读 · 0 评论 -
31,PyTorch 文本分类与机器翻译任务实现
在上一篇文章中,我们完成了 PyTorch 的 Seq2Seq 基础框架搭建,并验证了「加法题」这类简单序列到序列任务的正确性。无论分类还是翻译,我们都先把原始文本转成「(token_id_seq, label_or_target_seq)」二元组。下一节将把 Transformer 全面迁移到「预训练 + 微调」范式,实现 BERT 文本分类与 mBART 机器翻译。当序列较长或需要全局依赖时,CNN 窗口受限,Transformer 更香。训练脚本与常规图像分类一致,使用。文本分类任务复用同一套。原创 2025-07-16 08:16:14 · 1112 阅读 · 0 评论 -
30,PyTorch 序列模型的构建与训练
在上一节中,我们已经用 Hugging Facetokenizers训练出了一份垂直领域专用的 BPE 分词器,并把任意文本压缩成了短、准、省的张量序列。现在,是时候把这些张量喂给真正的序列模型,完成「从字符到语义」的最后一跃。本节聚焦「如何用最精简的代码在 PyTorch 里搭建并训练一个可落地的序列模型」。无论你是想跑通一个 LSTM 基线,还是想实现一个 1-D GAN 做数据增强,抑或想微调一个 Transformer Encoder 做下游分类,都可以直接套用本节模板。原创 2025-07-16 06:30:57 · 851 阅读 · 0 评论 -
29,PyTorch 文本预处理与词嵌入
29.9 自定义 Tokenizer:训练自己的 BPE / WordPiece<unk>本节给出一套「用 HuggingFacetokenizers在 5 分钟内训练并保存自定义 Tokenizer」的脚本,兼容后续 29.4 的 Dataset / DataLoader,零改动接入 1D-GAN 或 Transformer。原创 2025-07-13 14:07:51 · 389 阅读 · 0 评论 -
29,PyTorch 文本预处理与词嵌入
在把 GAN 迁移到文本、序列或表格数据时,第一步永远是「把符号变成向量」。本节提供一套面向 2024 年生产环境的 PyTorch 文本预处理流水线:从原始.txt或.csv到可直接喂给 Transformer、RNN 或 1D-GAN 的。所有代码均可直接复制到 Jupyter Notebook 或上一节的train.py中运行。原创 2025-07-12 12:28:50 · 311 阅读 · 0 评论 -
28,PyTorch GAN 的训练技巧与应用案例
在上一节我们已经拿到了“能跑”的 DCGAN 网络骨架,然而真正要把 GAN 训练得又稳又好,还需要一套可落地的工程套路和踩坑经验。本节从“训练技巧→可视化→常见故障排查→三个行业级落地案例”四个维度,把 2024 年社区验证过的最佳实践一次性汇总给你。所有代码片段均可直接复制到上一节的train.py或 Jupyter Notebook 中运行。原创 2025-07-12 10:22:54 · 271 阅读 · 0 评论 -
27,PyTorch 生成器与判别器的实现
在上一节我们梳理了 GAN 的核心原理与训练范式,本节给出在 PyTorch 2.x 环境下最常用、最稳定的 DCGAN 生成器(Generator)与判别器(Discriminator)完整代码实现。__init__以下代码可直接保存为models.py,在任何训练脚本中通过调用。原创 2025-07-11 21:24:54 · 305 阅读 · 0 评论 -
26,PyTorch GAN 的原理与结构
生成对抗网络(Generative Adversarial Network,GAN)自 2014 年 Ian Goodfellow 提出以来,已成为深度学习领域最具影响力的生成模型之一。PyTorch 的动态图机制与模块化设计,使得实现与调试 GAN 变得直观、高效。本节在冻结与微调的基础上,继续深入 PyTorch 中 GAN 的核心原理、网络结构、训练流程与常见实现细节,帮助读者快速搭建并稳定训练自己的 GAN 模型。原创 2025-07-11 21:13:03 · 599 阅读 · 0 评论 -
24,PyTorch 预训练模型的加载与使用
PyTorch 提供了丰富的预训练模型,这些模型为迁移学习提供了强大的支持。通过加载预训练模型、冻结部分层、替换分类层和微调模型,可以在各种任务中快速构建和优化模型。选择合适的预训练模型并合理调整训练策略,可以显著提高模型的性能和泛化能力。希望本文能够帮助你更好地理解和使用 PyTorch 中的预训练模型,提升你的深度学习项目的效果。更多技术文章见公众号: 大城市小农民。原创 2025-06-29 16:33:55 · 531 阅读 · 0 评论 -
23,PyTorch 迁移学习的概念与优势
根据目标任务的类别数量,替换预训练模型的最后分类层。# 假设目标任务有 10 个类别# 替换最后的分类层。原创 2025-06-29 09:55:51 · 633 阅读 · 0 评论 -
22,PyTorch 数据增强方法
在深度学习中,数据增强是一种重要的技术,用于通过生成更多样化的训练样本,提高模型的泛化能力和鲁棒性。PyTorch 提供了丰富的数据增强工具,这些工具可以帮助我们在训练过程中引入更多的变化,从而让模型更好地适应不同的输入情况。本文将详细介绍 PyTorch 中常用的数据增强方法及其应用。原创 2025-06-29 08:20:04 · 487 阅读 · 0 评论 -
21,PyTorch 数据预处理技术
除了使用提供的预处理操作外,还可以通过继承中的来实现自定义的数据预处理操作。# 自定义归一化操作# 使用自定义归一化])原创 2025-06-28 10:57:43 · 800 阅读 · 0 评论 -
20,PyTorch Dataset 和 DataLoader 的使用
以下是一个简单的自定义Datasetimport os"""初始化方法:param data_dir: 数据集目录:param transform: 数据预处理操作""""""返回数据集的大小""""""根据索引返回数据集中的第 idx 个样本:param idx: 样本索引"""# 示例使用])在 PyTorch 中,Dataset和DataLoader是处理数据的核心工具,它们为数据的加载、预处理和批量读取提供了强大的支持。通过自定义Dataset和使用。原创 2025-06-28 10:39:00 · 367 阅读 · 0 评论 -
19,PyTorch 模型的保存与加载
在 PyTorch 中,保存和加载模型是模型训练和部署中的重要环节。通过保存模型参数或整个模型,可以在不同的场景中灵活使用模型。在保存和加载模型时,需要注意版本兼容性、设备兼容性和模型结构一致性等问题。希望本文能够帮助您更好地理解和使用 PyTorch 进行模型的保存与加载,从而在实际项目中取得更好的效果。更多技术文章见公众号: 大城市小农民更多技术文章见公众号: 大城市小农民。原创 2025-06-27 22:32:02 · 747 阅读 · 0 评论 -
18,PyTorch 模型训练的基本流程
模型是深度学习的核心,定义一个合适的模型结构对于任务的成功至关重要。在 PyTorch 中,可以通过继承类来定义模型。模型结构由多个层组成,包括卷积层、全连接层、激活函数等。return x损失函数用于衡量模型的预测值与真实值之间的差异,优化器用于更新模型参数以最小化损失函数。PyTorch 模型训练的基本流程包括数据准备、模型定义、训练与验证、模型保存与加载等步骤。通过掌握这些步骤,可以系统地进行模型训练并提升模型性能。原创 2025-06-27 22:28:05 · 845 阅读 · 0 评论 -
17,PyTorch 优化器的选择与使用
在选择优化器之前,我们需要对不同优化器的特性有一个清晰的认识。优化器名称优点缺点适用场景SGD计算效率高,适合大规模数据集收敛速度较慢,容易陷入局部最小值小规模数据集,简单模型Momentum加速收敛,减少振荡参数调整较为复杂中等规模数据集,需要快速收敛的场景Adagrad自适应学习率,适合稀疏数据学习率会随着时间逐渐减小,后期收敛慢稀疏数据集,特征维度差异较大的场景RMSProp动态调整学习率,避免学习率过快减小参数较多,调整复杂中等规模数据集,需要稳定收敛的场景。原创 2025-06-27 22:20:00 · 873 阅读 · 0 评论 -
16,PyTorch 常见优化算法介绍
优化算法在深度学习中起着至关重要的作用,不同的优化算法适用于不同的任务和数据集。在实际应用中,应根据具体需求选择合适的优化算法。对于小规模数据集,可以优先选择 SGD 或 Adagrad;对于大规模数据集,推荐使用 Adam 或 RMSProp;在特殊任务中,可以尝试使用更高级的优化算法以获得更好的性能。希望本节内容对您有所帮助。更多技术文章见公众号: 大城市小农民。原创 2025-06-26 21:38:49 · 739 阅读 · 0 评论 -
15,PyTorch 损失函数的定义与计算
在某些情况下,PyTorch 提供的内置损失函数可能无法满足特定需求,此时可以自定义损失函数。自定义损失函数需要继承nn.Module类,并实现forward方法。# 自定义损失计算逻辑# 使用自定义损失函数# 示例数据# 计算损失值print("自定义损失值:", loss.item())损失函数在深度学习中起着至关重要的作用,它直接影响模型的训练效果和性能。在实际应用中,应根据任务类型和具体需求选择合适的损失函数。对于回归任务,优先选择均方误差损失;原创 2025-06-25 19:46:34 · 1314 阅读 · 0 评论 -
14,PyTorch 激活函数的选择与应用
激活函数在神经网络中起着至关重要的作用,合理选择和使用激活函数可以显著提升模型的性能。在实际应用中,可以根据任务类型和模型结构选择合适的激活函数。例如,在隐藏层中优先使用 ReLU 或其变体,在输出层根据任务类型选择 Sigmoid、Softmax 或线性激活函数。希望本节内容对您有所帮助。更多技术文章见公众号: 大城市小农民更多技术文章见公众号: 大城市小农民。原创 2025-06-25 06:22:01 · 1140 阅读 · 0 评论 -
13,PyTorch 神经网络层的定义与用法
除了使用 PyTorch 提供的内置层,我们还可以通过继承来定义自己的神经网络层。自定义层可以包含多个子层,并实现复杂的前向传播逻辑。return x# 定义一个自定义层# 输入数据x = torch.randn(1, 10) # 假设输入数据的维度为 (batch_size, in_features)# 前向传播print("输出数据的形状:", output.shape)输出数据的形状: torch.Size([1, 10])在上述代码中,类继承了,并在__init__原创 2025-06-22 06:51:41 · 736 阅读 · 0 评论 -
12,PyTorch 梯度累加与清零
在 PyTorch 中,梯度累加和清零是训练神经网络时非常重要的操作。正确地使用梯度累加和清零可以提高模型的训练效率和稳定性。本节将详细介绍梯度累加与清零的原理、使用方法以及一些常见的注意事项。原创 2025-06-21 21:25:54 · 501 阅读 · 0 评论 -
11,PyTorch 梯度计算与反向传播
在 PyTorch 中,梯度计算与反向传播是自动求导机制的核心功能,它们使得我们能够高效地训练神经网络模型。通过自动求导,PyTorch 能够根据计算图自动计算出每个张量的梯度,从而为优化算法提供必要的信息。本节将详细介绍 PyTorch 中梯度计算与反向传播的工作原理、使用方法以及一些常见的问题和解决方法。原创 2025-06-21 06:04:25 · 1062 阅读 · 0 评论 -
10,PyTorch 张量的 requires_grad 属性
本节详细介绍了 PyTorch 中张量的属性的作用、使用方法以及相关注意事项。属性是 PyTorch 自动求导机制的核心,它决定了张量是否参与梯度计算。通过合理设置属性,可以有效控制内存占用,并优化计算效率。掌握属性的使用方法和注意事项,将有助于我们更好地利用 PyTorch 构建和优化深度学习模型。更多技术文章见公众号: 大城市小农民。原创 2025-06-20 09:47:35 · 434 阅读 · 0 评论 -
9,PyTorch 计算图与动态计算图
本节详细介绍了 PyTorch 中的计算图以及动态计算图的特点。动态计算图是 PyTorch 的核心特性之一,它使得模型的构建和调试更加灵活和高效。通过动态计算图,我们可以轻松地处理动态数据结构,支持各种高级操作,并实现自动求导功能。掌握动态计算图的使用方法和注意事项,将有助于我们更好地利用 PyTorch 构建和优化深度学习模型。更多技术文章见公众号: 大城市小农民。原创 2025-06-20 09:36:47 · 1014 阅读 · 0 评论 -
8,PyTorch 张量的形状变换
本节详细介绍了 PyTorch 中张量形状变换的常用方法,包括基本的形状改变、展平、添加和删除维度以及转置操作。这些方法在深度学习中非常实用,能够帮助我们灵活地处理张量数据。掌握这些技巧后,你将能够更高效地构建和优化深度学习模型。更多技术文章见公众号: 大城市小农民更多技术文章见公众号: 大城市小农民。原创 2025-06-19 19:39:51 · 1176 阅读 · 0 评论 -
7,PyTorch 张量的数学运算
本节详细介绍了更多技术文章见公众号: 大城市小农民。原创 2025-06-18 19:39:22 · 1037 阅读 · 0 评论 -
6,PyTorch 张量的索引与切片
本节详细介绍了 PyTorch 张量的索引与切片操作。通过索引和切片,我们可以高效地访问和操作张量中的数据。掌握这些操作对于处理深度学习中的数据非常重要。通过本节的学习,你应该能够熟练使用索引和切片操作,并理解它们的注意事项。更多技术文章见公众号: 大城市小农民。原创 2025-06-18 06:12:29 · 1262 阅读 · 0 评论 -
5,PyTorch 张量的创建与属性
本节详细介绍了 PyTorch 张量的创建方法、属性以及常见操作。张量是 PyTorch 中的核心数据结构,掌握张量的使用对于深度学习模型的构建和训练至关重要。通过本节的学习,你应该能够熟练创建和操作张量,并理解张量的属性和自动求导机制。更多技术文章见公众号: 大城市小农民。原创 2025-06-15 11:36:40 · 888 阅读 · 0 评论 -
3,PyTorch 的安装与验证
本文详细介绍了PyTorch深度学习框架的安装与验证方法。主要内容包括:1) 通过pip、conda和源代码编译三种方式安装PyTorch的步骤;2) 验证PyTorch是否成功安装及GPU支持的方法;3) 通过线性回归模型示例验证安装完整性;4) 常见问题解决方案。文章为读者提供了完整的PyTorch环境搭建指南,确保后续深度学习开发的顺利开展。原创 2025-06-14 14:00:40 · 1186 阅读 · 0 评论 -
2,PyTorch基本概念与张量操作
本节详细介绍了 PyTorch 的基本概念和张量操作,包括张量的创建、基本操作、设备管理以及自动求导机制。通过这些基础知识,读者可以更好地理解和使用 PyTorch 进行深度学习开发。在后续章节中,我们将进一步探讨 PyTorch 的高级特性,包括神经网络的构建与训练、模型的保存与加载等。希望本节内容能够为读者在深度学习领域的探索提供帮助。更多技术文章见公众号: 大城市小农民。原创 2025-06-14 11:41:23 · 994 阅读 · 0 评论 -
1,PyTorch环境搭建
本文详细介绍了在不同操作系统上使用venv和conda搭建 PyTorch 环境的方法,包括环境搭建前的准备、创建虚拟环境、安装 PyTorch、环境搭建后的验证与测试以及常见问题及解决方法。通过本文的介绍,读者应该能够顺利搭建 PyTorch 环境,并开始使用 PyTorch 进行深度学习项目的开发。在搭建环境的过程中,可能会遇到各种问题,但只要按照本文提供的解决方法逐一排查,相信都能够顺利解决。希望本文能够为读者在深度学习领域的探索提供帮助。更多技术文章见公众号: 大城市小农民。原创 2025-06-14 08:15:42 · 767 阅读 · 0 评论