大数相乘——分治法(lua版)

本文介绍了如何使用分治法来实现大数相乘,避免了穷举法带来的高时间复杂度。虽然不详细阐述穷举法,但重点展示了 Lua 代码实现分治法的过程。代码中应注意变量作用域,且算法细节仍有优化空间,如返回值应为table。后续内容将结合此算法讲解C++中关于数组、STL容器作为函数参数及返回值的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

首先,什么是大数相乘?大数相乘通过字面的意思也能知道,就是量很大的相乘。他的解法有很多种,想穷举,分治法等等。但是如果是通过穷举法来解决大数相乘,他的时间复杂度是n的平方。但是,如果使用分治法,它的时间复杂度就降低很多。

在这里,我们不讲怎么用穷举法来实现大数相乘。这个方法的原理很简单,就是利用的是乘法的规则来实现。

使用分治法来实现大数相乘他的原理,这个每一本算法书上都有,就不在这里写了。

这里直接上实现代码。

编译环境 win7+sublime+Lua

function mult(tx, ty, n)
	-- body
	print("n=",n)
	if n==1 then
		--todo
		return tx[1]*ty[1]
	else
		--todo
		local a,b,c,d={},{},{},{}--
		local mid=math.floor(n/2)
		print("mid=",mid)
		--划分
		for i=1,mid do
			table.insert(a, tx[i])
			table.insert(c, ty[i])
		end
		for j=mid+1,n do
			table.insert(b, tx[j])
			table.insert(d, ty[j])
		end
		print("=======a=======")
		for i,v in ipairs(a) do
			print(i,v)
		end

		print("=======b=======")
		for i,v in ipairs(b) do
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值