首先,什么是大数相乘?大数相乘通过字面的意思也能知道,就是量很大的相乘。他的解法有很多种,想穷举,分治法等等。但是如果是通过穷举法来解决大数相乘,他的时间复杂度是n的平方。但是,如果使用分治法,它的时间复杂度就降低很多。
在这里,我们不讲怎么用穷举法来实现大数相乘。这个方法的原理很简单,就是利用的是乘法的规则来实现。
使用分治法来实现大数相乘他的原理,这个每一本算法书上都有,就不在这里写了。
这里直接上实现代码。
编译环境 win7+sublime+Lua
function mult(tx, ty, n)
-- body
print("n=",n)
if n==1 then
--todo
return tx[1]*ty[1]
else
--todo
local a,b,c,d={},{},{},{}--
local mid=math.floor(n/2)
print("mid=",mid)
--划分
for i=1,mid do
table.insert(a, tx[i])
table.insert(c, ty[i])
end
for j=mid+1,n do
table.insert(b, tx[j])
table.insert(d, ty[j])
end
print("=======a=======")
for i,v in ipairs(a) do
print(i,v)
end
print("=======b=======")
for i,v in ipairs(b) do