初阶数据结构二叉树

1.1 树的概念与结构

树是⼀种⾮线性的数据结构,它是由 n ( n>=0 ) 个有限结点组成⼀个具有层次关系的集合。把它叫做 树是因为它看起来像⼀棵倒挂的树,也就是说它是根朝上,⽽叶朝下的。

• 有⼀个特殊的结点,称为根结点,根结点没有前驱结点。

• 除根结点外,其余结点被分成 M(M>0) 个互不相交的集合 T1 、 T2 、 …… 、 Tm ,其中每⼀个集合 Ti(1 <= i <= m) ⼜是⼀棵结构与树类似的⼦树。每棵⼦树的根结点有且只有⼀个前驱,可以 有 0 个或多个后继。因此,树是递归定义的

⾮树形结构:

⼦树是不相交的(如果存在相交就是图了)

除了根结点外,每个结点有且仅有⼀个⽗结点

⼀棵N个结点的树有N-1条边

1.2 树相关术语

⽗结点/双亲结点:若⼀个结点含有⼦结点,则这个结点称为其⼦结点的⽗结点;如上图:A是B的⽗ 结点

⼦结点/孩⼦结点:⼀个结点含有的⼦树的根结点称为该结点的⼦结点;如上图:B是A的孩⼦结点

结点的度:⼀个结点有⼏个孩⼦,他的度就是多少;⽐如A的度为6,F的度为2,K的度为0 树的

度:⼀棵树中,最⼤的结点的度称为树的度;如上图:树的度为 6

叶⼦结点/终端结点:度为 0 的结点称为叶结点;如上图: B 、 C 、 H 、 I... 等结点为叶结点

分⽀结点/⾮终端结点:度不为 0 的结点;如上图: D 、 E 、 F 、 G... 等结点为分⽀结点

兄弟结点:具有相同⽗结点的结点互称为兄弟结点(亲兄弟);如上图: B 、 C 是兄弟结点

结点的层次:从根开始定义起,根为第 1 层,根的⼦结点为第 2 层,以此类推;

树的⾼度或深度:树中结点的最⼤层次;如上图:树的⾼度为 4

结点的祖先:从根到该结点所经分⽀上的所有结点;如上图: A 是所有结点的祖先

路径:⼀条从树中任意节点出发,沿⽗节点-⼦节点连接,达到任意节点的序列;⽐如A到Q的路径为: A-E-J-Q;H到Q的路径H-D-A-E-J-Q

⼦孙:以某结点为根的⼦树中任⼀结点都称为该结点的⼦孙。如上图:所有结点都是A的⼦孙

森林:由 m ( m>0 ) 棵互不相交的树的集合称为森林;

1.3 树的表⽰

孩⼦兄弟表⽰法: 树结构相对线性表就⽐较复杂了,要存储表⽰起来就⽐较⿇烦了,既然保存值域,也要保存结点和结 点之间的关系,实际中树有很多种表⽰⽅式如:双亲表⽰法,孩⼦表⽰法、孩⼦双亲表⽰法以及孩⼦ 兄弟表⽰法等。我们这⾥就简单的了解其中最常⽤的孩⼦兄弟表⽰法

struct TreeNode 
{ 
struct Node* child;   // 左边开始的第⼀个孩⼦结点
 
struct Node* brother; // 指向其右边的下⼀个兄弟结点
 
int data;             
}; 

⼆叉树

2.1概念与结构

在树形结构中,我们最常⽤的就是⼆叉树,⼀棵⼆叉树是结点的⼀个有限集合,该集合由⼀个根结点 加上两棵别称为左⼦树和右⼦树的⼆叉树组成或者为空

从上图可以看出⼆叉树具备以下特点:

  1. ⼆叉树不存在度⼤于2的结点
  2. ⼆叉树的⼦树有左右之分,次序不能颠倒,因此⼆叉树是有序树
    注意:对于任意的⼆叉树都是由以下⼏种情况复合⽽成的

2.2特殊的⼆叉树

满⼆叉树

⼀个⼆叉树,如果每⼀个层的结点数都达到最⼤值,则这个⼆叉树就是满⼆叉树。也就是说,如果⼀ 个⼆叉树的层数为 K ,且结点总数是 2的k次方− 1 ,则它就是满⼆叉树

2.3完全二叉树

完全⼆叉树是效率很⾼的数据结构,完全⼆叉树是由满⼆叉树⽽引出来的。对于深度为 K 的,有 n 个 结点的⼆叉树,当且仅当其每⼀个结点都与深度为K的满⼆叉树中编号从 1 ⾄ n 的结点⼀⼀对应时称 之为完全⼆叉树。要注意的是满⼆叉树是⼀种特殊的完全⼆叉树

实现顺序结构⼆叉树

⼀般堆使⽤顺序结构的数组来存储数据,堆是⼀种特殊的⼆叉树,具有⼆叉树的特性的同时,还具备 其他的特性。

堆的概念与结构

堆的实现

#include<stdio.h>
#include<stdlib.h>
#include<assert.h>
#include<stdbool.h>

typedef int DataType;
typedef struct Heap
{
	DataType* arr;
	int size;
	int capacity;
}HP;


//默认初始化堆
void HPInit(HP* php);

//向上调整
void AdjustUp(DataType* arr, int child);

void HPPush(HP* php, DataType x);

void HPPop(HP* php);

DataType HPTop(HP* php);

// 判空
bool HPEmpty(HP* php);

//堆的销毁
void HPdestroy(HP* php);

默认初始化堆

void HPInit(HP* php)
{
	assert(php);
	php->arr = NULL;
	php->capacity = php->size = 0;

}

二叉树中插入数据

void HPPush(HP* php, DataType x);

void HPPush(HP* php, DataType x)
{
	assert(php);
	if (php->capacity == php->size)
	{
		int newcapacity = php->capacity == 0 ? 4 : 2*php->capacity;
		DataType* tmp = (DataType*)realloc(php->arr,newcapacity*sizeof(DataType));
		if (tmp == NULL)
		{
			perror("realloc fail");
			exit(1);
		}
		php->arr = tmp;
		php->capacity = newcapacity;
	}//前面顺序表的操作
	php->arr[php->size] = x;

	AdjustUp(php->arr, php->size);
	php->size++;

}

向上调整函数

AdjustUp(php->arr, php->size);


void AdjustUp(DataType* arr, int child)
{
	int parent = (child - 1) / 2;
	while (child > 0)
	{
		if (arr[child] < arr[parent])
		{
			Swap(&arr[parent], &arr[child]);
			child = parent;
			parent= (child - 1) / 2;
		}
		else
		{
			break;
		}
	}
	
}

16只用循环一次,但当插入的是11时向上就要交换两次,

child = parent;

parent= (child - 1) / 2;

让child走到25的位置,再让parent走到15的位置满足条件就一直循环下去

HP hp;
HPInit(&hp);
int arr[] = { 17,20,10,13,19,15 };
for (int i = 0; i <6 ; i++)
{
	HPPush(&hp, arr[i]);
}

出数据

void HPPop(HP* php);

void HPPop(HP* php)
{
	assert(php && php->size);

	//arr[0]  arr[size-1]
	Swap(&php->arr[0], &php->arr[php->size - 1]);

	--php->size;

	AdjustDown(php->arr, 0, php->size);


}

让首元素和尾元素交换,这样size--时尾数据自然就被删除了

向下调整

void AdjustDown(DataType* arr, int parent, int n)

void AdjustDown(DataType* arr, int parent, int n)
{
	int child = 2 * parent + 1;//找到的是左孩子
	//找左右孩子最小的
	while (child < n)
	{
		if (child + 1 < n && arr[child] > arr[child + 1])
		{
			child++;
		}
		if (arr[child] < arr[parent])
		{
			Swap(&arr[child], &arr[parent]);
			parent = child;
			child = 2 * parent + 1;
		}
		else
		{
			break;
		}
	}

}

取首元素

DataType HPTop(HP* php);

DataType HPTop(HP* php)
{
	assert(php && php->size);
	return php->arr[0];

}

判空

bool HPEmpty(HP* php)
{
	assert(php);
	return php->size == 0;
}

堆的销毁

void HPdestroy(HP* php)
{
	assert(php);
	if (php->arr)
	{
		free(php->arr);
	}
	php->arr = NULL;
	php->capacity = php->size = 0;
}
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值