树
1.1 树的概念与结构
树是⼀种⾮线性的数据结构,它是由 n ( n>=0 ) 个有限结点组成⼀个具有层次关系的集合。把它叫做 树是因为它看起来像⼀棵倒挂的树,也就是说它是根朝上,⽽叶朝下的。
• 有⼀个特殊的结点,称为根结点,根结点没有前驱结点。
• 除根结点外,其余结点被分成 M(M>0) 个互不相交的集合 T1 、 T2 、 …… 、 Tm ,其中每⼀个集合 Ti(1 <= i <= m) ⼜是⼀棵结构与树类似的⼦树。每棵⼦树的根结点有且只有⼀个前驱,可以 有 0 个或多个后继。因此,树是递归定义的
⾮树形结构:
⼦树是不相交的(如果存在相交就是图了)
除了根结点外,每个结点有且仅有⼀个⽗结点
⼀棵N个结点的树有N-1条边
1.2 树相关术语
⽗结点/双亲结点:若⼀个结点含有⼦结点,则这个结点称为其⼦结点的⽗结点;如上图:A是B的⽗ 结点
⼦结点/孩⼦结点:⼀个结点含有的⼦树的根结点称为该结点的⼦结点;如上图:B是A的孩⼦结点
结点的度:⼀个结点有⼏个孩⼦,他的度就是多少;⽐如A的度为6,F的度为2,K的度为0 树的
度:⼀棵树中,最⼤的结点的度称为树的度;如上图:树的度为 6
叶⼦结点/终端结点:度为 0 的结点称为叶结点;如上图: B 、 C 、 H 、 I... 等结点为叶结点
分⽀结点/⾮终端结点:度不为 0 的结点;如上图: D 、 E 、 F 、 G... 等结点为分⽀结点
兄弟结点:具有相同⽗结点的结点互称为兄弟结点(亲兄弟);如上图: B 、 C 是兄弟结点
结点的层次:从根开始定义起,根为第 1 层,根的⼦结点为第 2 层,以此类推;
树的⾼度或深度:树中结点的最⼤层次;如上图:树的⾼度为 4
结点的祖先:从根到该结点所经分⽀上的所有结点;如上图: A 是所有结点的祖先
路径:⼀条从树中任意节点出发,沿⽗节点-⼦节点连接,达到任意节点的序列;⽐如A到Q的路径为: A-E-J-Q;H到Q的路径H-D-A-E-J-Q
⼦孙:以某结点为根的⼦树中任⼀结点都称为该结点的⼦孙。如上图:所有结点都是A的⼦孙
森林:由 m ( m>0 ) 棵互不相交的树的集合称为森林;
1.3 树的表⽰
孩⼦兄弟表⽰法: 树结构相对线性表就⽐较复杂了,要存储表⽰起来就⽐较⿇烦了,既然保存值域,也要保存结点和结 点之间的关系,实际中树有很多种表⽰⽅式如:双亲表⽰法,孩⼦表⽰法、孩⼦双亲表⽰法以及孩⼦ 兄弟表⽰法等。我们这⾥就简单的了解其中最常⽤的孩⼦兄弟表⽰法
struct TreeNode
{
struct Node* child; // 左边开始的第⼀个孩⼦结点
struct Node* brother; // 指向其右边的下⼀个兄弟结点
int data;
};
⼆叉树
2.1概念与结构
在树形结构中,我们最常⽤的就是⼆叉树,⼀棵⼆叉树是结点的⼀个有限集合,该集合由⼀个根结点 加上两棵别称为左⼦树和右⼦树的⼆叉树组成或者为空
从上图可以看出⼆叉树具备以下特点:
- ⼆叉树不存在度⼤于2的结点
- ⼆叉树的⼦树有左右之分,次序不能颠倒,因此⼆叉树是有序树
注意:对于任意的⼆叉树都是由以下⼏种情况复合⽽成的
2.2特殊的⼆叉树
满⼆叉树
⼀个⼆叉树,如果每⼀个层的结点数都达到最⼤值,则这个⼆叉树就是满⼆叉树。也就是说,如果⼀ 个⼆叉树的层数为 K ,且结点总数是 2的k次方− 1 ,则它就是满⼆叉树
2.3完全二叉树
完全⼆叉树是效率很⾼的数据结构,完全⼆叉树是由满⼆叉树⽽引出来的。对于深度为 K 的,有 n 个 结点的⼆叉树,当且仅当其每⼀个结点都与深度为K的满⼆叉树中编号从 1 ⾄ n 的结点⼀⼀对应时称 之为完全⼆叉树。要注意的是满⼆叉树是⼀种特殊的完全⼆叉树
实现顺序结构⼆叉树
⼀般堆使⽤顺序结构的数组来存储数据,堆是⼀种特殊的⼆叉树,具有⼆叉树的特性的同时,还具备 其他的特性。
堆的概念与结构
堆的实现
#include<stdio.h>
#include<stdlib.h>
#include<assert.h>
#include<stdbool.h>
typedef int DataType;
typedef struct Heap
{
DataType* arr;
int size;
int capacity;
}HP;
//默认初始化堆
void HPInit(HP* php);
//向上调整
void AdjustUp(DataType* arr, int child);
void HPPush(HP* php, DataType x);
void HPPop(HP* php);
DataType HPTop(HP* php);
// 判空
bool HPEmpty(HP* php);
//堆的销毁
void HPdestroy(HP* php);
默认初始化堆
void HPInit(HP* php)
{
assert(php);
php->arr = NULL;
php->capacity = php->size = 0;
}
二叉树中插入数据
void HPPush(HP* php, DataType x);
void HPPush(HP* php, DataType x)
{
assert(php);
if (php->capacity == php->size)
{
int newcapacity = php->capacity == 0 ? 4 : 2*php->capacity;
DataType* tmp = (DataType*)realloc(php->arr,newcapacity*sizeof(DataType));
if (tmp == NULL)
{
perror("realloc fail");
exit(1);
}
php->arr = tmp;
php->capacity = newcapacity;
}//前面顺序表的操作
php->arr[php->size] = x;
AdjustUp(php->arr, php->size);
php->size++;
}
向上调整函数
AdjustUp(php->arr, php->size);
void AdjustUp(DataType* arr, int child)
{
int parent = (child - 1) / 2;
while (child > 0)
{
if (arr[child] < arr[parent])
{
Swap(&arr[parent], &arr[child]);
child = parent;
parent= (child - 1) / 2;
}
else
{
break;
}
}
}
16只用循环一次,但当插入的是11时向上就要交换两次,
child = parent;
parent= (child - 1) / 2;
让child走到25的位置,再让parent走到15的位置满足条件就一直循环下去
例
HP hp;
HPInit(&hp);
int arr[] = { 17,20,10,13,19,15 };
for (int i = 0; i <6 ; i++)
{
HPPush(&hp, arr[i]);
}
出数据
void HPPop(HP* php);
void HPPop(HP* php)
{
assert(php && php->size);
//arr[0] arr[size-1]
Swap(&php->arr[0], &php->arr[php->size - 1]);
--php->size;
AdjustDown(php->arr, 0, php->size);
}
让首元素和尾元素交换,这样size--时尾数据自然就被删除了
向下调整
void AdjustDown(DataType* arr, int parent, int n)
void AdjustDown(DataType* arr, int parent, int n)
{
int child = 2 * parent + 1;//找到的是左孩子
//找左右孩子最小的
while (child < n)
{
if (child + 1 < n && arr[child] > arr[child + 1])
{
child++;
}
if (arr[child] < arr[parent])
{
Swap(&arr[child], &arr[parent]);
parent = child;
child = 2 * parent + 1;
}
else
{
break;
}
}
}
取首元素
DataType HPTop(HP* php);
DataType HPTop(HP* php)
{
assert(php && php->size);
return php->arr[0];
}
判空
bool HPEmpty(HP* php)
{
assert(php);
return php->size == 0;
}
堆的销毁
void HPdestroy(HP* php)
{
assert(php);
if (php->arr)
{
free(php->arr);
}
php->arr = NULL;
php->capacity = php->size = 0;
}