GBDT算法简介及原理

        提升树是以分类树或回归树为基本分类器的提升方法。提升树算法也是采用前向分步算法,与AdaBoost不同的是在每一次迭代时,提升树只是简单拟合当前模型的残差。下面以回归问题的提升树为例详细讲解。


1. 提升树算法



2. GBDT回归算法





3. 2. GBDT分类算法




GBDT(Gradient Boosting Decision Tree)是一种集成学习算法,它通过多个决策树的集成来进行预测和分类。GBDT算法原理是通过迭代的方式,每次迭代都训练一个新的决策树来纠正前面所有决策树的错误。 下面是GBDT算法的基本原理: 1. 初始化:首先,GBDT算法使用一个初始的预测值作为基准,通常可以选择训练集的平均值作为初始预测值。 2. 迭代训练:对于每次迭代,GBDT算法会训练一个新的决策树模型。在训练过程中,通过计算损失函数的负梯度来纠正前面所有决策树的错误。 3. 损失函数:GBDT算法通常使用平方损失函数或对数损失函数来衡量模型的误差。在每次迭代中,通过计算真实值与当前模型预测值之间的差异来更新模型。 4. 加权预测:对于每次迭代,新训练出的决策树会给出一个预测结果。为了将多个决策树的预测结果进行加权,通常会给每个决策树赋予一个权重,这些权重可以通过优化目标函数来确定。 5. 集成预测:最后,GBDT算法将所有决策树的预测结果进行加权求和,得到最终的集成预测结果。 GBDT算法的优点包括:能够处理各种类型的特征,对异常值和噪声具有较好的鲁棒性,能够学习非线性关系等。同时,GBDT算法也存在一些挑战,如对参数调优敏感,计算复杂度较高等。 GBDT算法在机器学习中有广泛的应用,尤其在预测和回归问题上表现出色。它可以有效地处理大规模数据集和高维特征,同时具有较好的泛化能力和鲁棒性。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值