基于短文本的推荐

很多时候系统只会推送那些大V发布的微博,而对于新人发布的优质内容就会忽略。那么如何避免这一问题呢?首先要做的就是发现优质内容的微博。

 

1. Baseline

1.1 用户特征

(1)基本属性

一般指用户侧的基本属性,如年龄、性别等。由于数据中无相关信息,于是无需进行分析。

(2)用户-博文交叉特征(统计特征)

1)过去一个月:

-发布博文总数

-最大评论数、点赞数、转发数    

-最小评论数、点赞数、转发数

-平均评论数、点赞数、转发数

-众数评论数、点赞数、转发数

-方差评论数、点赞数、转发数

 

2)过去一周:

-发布博文总数

-最大评论数、点赞数、转发数    

-最小评论数、点赞数、转发数

-平均评论数、点赞数、转发数

-众数评论数、点赞数、转发数

-方差评论数、点赞数、转发数

 

 

1.2 微博内容特征

这里暂且不分析,下一节将详细挖掘文本相关特征。

 

1.3 博文时间特征

(1)基本属性

-是星期几

-是否周末

-是否是节假日

-发文时间段(分24个时间段)

 

(2)统计特征

过去一周每个时间段的:

-发布博文总数

-最大评论数、点赞数、转发数    

-最小评论数、点赞数、转发数

-平均评论数、点赞数、转发数

-众数评论数、点赞数、转发数

-方差评论数、点赞数、转发数

 

注:由于预测的数据集中存在没有用户统计特征的数据,为了提高模型的泛化性,最后添加一维特征为

-是否有用户统计特征(过去三个月是否发过微博)

 

2. 文本特征挖掘

 2.1 基于后验的统计特征

根据已经有点赞、评论、转发的微博,来统计每个单词对应的点赞、评论、转发等。

实验结果是大大改进模型的精度,于是如何细化到每人每词的统计特征,但是这样会使得特征十分稀疏,于是把词的粒度放粗,对微博进行聚类,得到每人每类簇的统计特征,从而大大提高模型的效果。

 

2.2 基于聚类的粗粒度统计特征

用户-类别的交互特征

(1)利用训练集训练词向量;

(2)使用词向量对微博进行聚类;

(3)计算每人每类簇的统计特征;

 

### 基于深度学习的文本推荐算法实现教程 #### 1. 深度学习在文本推荐中的作用 深度学习技术因其强大的非线性转换能力和深层特征学习特性,在文本推荐领域得到了广泛应用。相比于传统的统计学方法,深度学习可以通过端到端的方式自动提取文本数据中的深层次特征[^2]。这种方法不仅减少了繁琐的手动特征工程工作,还显著提升了模型的表现。 #### 2. 数据准备与预处理 构建基于深度学习的文本推荐系统的第一步是对原始数据进行清洗和预处理。这通常包括以下几个方面: - **分词与去停用词**:将文本分割成单词序列,并移除无意义的高频词语。 - **关键词提取**:通过TF-IDF或其他自然语言处理工具提取文档的关键主题。 - **向量化表示**:将文本转化为数值形式以便输入神经网络。常用的方法有Word Embedding(如Word2Vec、GloVe)、BERT等预训练模型[^3]。 ```python from sklearn.feature_extraction.text import TfidfVectorizer # 使用TF-IDF对文本进行向量化 vectorizer = TfidfVectorizer(stop_words='english', max_features=5000) X = vectorizer.fit_transform(text_data).toarray() ``` #### 3. 构建深度学习模型 现代文本推荐系统的主流架构通常是结合卷积神经网络(CNN)或循环神经网络(RNN/LSTM/GRU)以及注意力机制来捕捉文本的时间序列特性和上下文关系。以下是几种常见的模型设计思路: ##### (1)基于CNN的文本分类器 卷积操作可以帮助捕获局部模式,适用于短文本场景下的快速匹配任务。 ```python import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Conv1D, MaxPooling1D, Flatten, Dense model = Sequential([ Conv1D(filters=64, kernel_size=3, activation='relu', input_shape=(None, X.shape[1])), MaxPooling1D(pool_size=2), Flatten(), Dense(128, activation='relu'), Dense(num_classes, activation='softmax') ]) model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) model.summary() ``` ##### (2)融合LSTM的序列建模 当面对较长且具有时间依赖性的文本时,采用长短时记忆单元能有效缓解梯度消失问题并保留长期历史信息。 ```python from tensorflow.keras.layers import LSTM lstm_model = Sequential([ LSTM(units=100, dropout=0.2, recurrent_dropout=0.2, input_shape=(timesteps, features)), Dense(output_dim=num_outputs, activation="sigmoid") ]) lstm_model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) ``` #### 4. 训练与评估 完成模型搭建之后,需将其应用于实际数据集上进行迭代优化。在此过程中应特别注意过拟合现象的发生,可通过正则化手段或者早停策略加以控制。同时选用合适的评价指标衡量性能优劣,比如精确率(Precision)、召回率(Recall)、F1分数(F1-Score)[^4]。 #### 5. 结果解释与部署 最终得到经过良好调参后的推荐引擎后,还需考虑其可扩展性和实时响应速度等因素。借助云计算平台和服务框架可以方便地对外提供API接口供前端调用。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值