基于Transformer框架实现微调后Qwen/DeepSeek模型的非流式批量推理

在基于LLamaFactory微调完具备思维链的DeepSeek模型之后(详见《深入探究LLamaFactory推理DeepSeek蒸馏模型时无法展示<think>思考过程的问题》),接下来就需要针对微调好的模型或者是原始模型(注意需要有一个本地的模型文件,全量微调就是saves下面的文件夹,如果是LoRA,还需要进行一步导出模型的操作),实现快速高效的模型推理。本文将详细分享如何基于Transformer框架,通过多GPU并行实现DeepSeek模型的非流式批量推理,并解决在实践中遇到的关键技术挑战如输出结果错乱、tokenizer编码参数、tokenizer解码输出、推理效果不一致、开启多卡多进程推理等等。


🎉进入大模型应用与实战专栏 | 🚀查看更多专栏内容


在这里插入图片描述

单卡并行

下面我们先从简单

评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

羊城迷鹿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值