第十一届蓝桥杯大赛决赛试题JavaA组——奇偶覆盖

该博客介绍了一个使用二维差分和前缀和统计二维范围内数字奇偶数的问题。代码中,作者读取多个矩形区域,更新二维数组并计算每个位置的奇偶性,最后输出奇数和偶数的计数。这种方法适用于解决大规模数据的统计问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

利用二维差分对范围内的数字+1,最后统计有多少个奇数多少个偶数。只通过了当前的测试用例,没有测其他的,多指教……

import java.util.Scanner;
/**
3
1 1 3 3
2 2 4 4
3 3 5 5
 */
public class 奇偶覆盖 {

	public static void main(String[] args) {
		Scanner sc = new Scanner(System.in);
		int n = sc.nextInt();
		int[][] b = new int[20481][20481];

		int maxx = 0;//用于保存x和y的最大值
		int maxy = 0;
		
		while (n-- > 0) {
			int x1 = sc.nextInt();
			int y1 = sc.nextInt();
			int x2 = sc.nextInt();
			int y2 = sc.nextInt();
			maxx = Math.max(maxx, Math.max(x1, x2));
			maxy = Math.max(maxy, Math.max(y1, y2));
			x2--;y2--;//因为重复的部分是格子,所以要将右边范围-1,以下是二维差分
			b[x1][y1] += 1;
			b[x1][y2 + 1] -= 1;
			b[x2 + 1][y1] -= 1;
			b[x2 + 1][y2 + 1] += 1; 
		}
		int ou = 0;
		int ji = 0;
		for(int i = 1;i <= maxx;i++) {
			for(int j = 1;j <= maxy;j++) {
				b[i][j] = b[i - 1][j] + b[i][j - 1]  - b[i - 1][j - 1] + b[i][j];//二维前缀和
				System.out.print(b[i][j]+ " ");
				if(b[i][j] != 0) {
					if(b[i][j] % 2 == 0)
						ou++;
					else 
						ji++;
				}
			}
			System.out.println();
		}
		System.out.println(ou);
		System.out.println(ji);
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

自行自路,别后无书

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值