
paper
文章平均质量分 81
记录备忘
Mr.Q
纸上得来终觉浅,绝知此事要躬行。 ---陆游
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【CV 顶会论文解读】SegNeXt:用卷积重新定义语义分割,性能超越 Transformer!
语义分割是计算机视觉的核心任务之一,它要求模型像画家一样为每个像素 "涂色"。传统的 CNN 模型(如 DeepLab)和新兴的 Transformer 模型(如 SegFormer)都曾引领风骚。🔥 实时性:SegNeXt-T 在 RTX 3090 上实现 25 FPS,远超 BiSeNetv2 等实时模型!💡 有没有一种方法能兼具两者的优点?SegNeXt 给出了答案!SegNeXt 的核心创新在于。原创 2025-03-10 18:24:31 · 698 阅读 · 0 评论 -
DRÆM无监督异常检测(CVPR2021)
DRÆM无监督,直接学习如何区分正常和异常的图像区域。可直接定位异常,无需复杂后处理。原创 2024-12-24 19:41:53 · 1723 阅读 · 0 评论 -
通俗易懂贝叶斯公式
通俗易懂贝叶斯公式原创 2024-12-14 11:44:04 · 1209 阅读 · 0 评论 -
DDPM扩散模型源码详解
按照算法步骤,一一对应源码。原创 2024-12-07 15:28:33 · 1445 阅读 · 0 评论 -
cutpaste 超简单的无监督异常检测算法
简单一句话,CutPaste算法的原理是通过从正常图像中切割出一个矩形区域并将其粘贴到同一图像的随机位置来生成增强样本,以此引入局部不规则性,从而训练模型学习识别这些不规则性,进而检测和定位真实缺陷。其中 X是正常数据集,c(x) 是从 x 中随机位置裁剪出的图像块,CP(⋅) 是CutPaste增强操作,g 是一个由深度网络参数化的二元分类器,CE(⋅,⋅) 代表交叉熵损失。:基于上述学习到的表示,构建一个生成式的单分类器,用于区分带有异常模式的数据与正常数据。的异常检测,整个图像对应一个异常分数值;原创 2024-12-07 09:38:51 · 1323 阅读 · 0 评论 -
工业异常检测-CVPR2024-RealNet无监督异常检测算法
RealNet提供了一个新颖且有效的无监督异常检测框架,旨在解决现有方法中的挑战,如生成逼真的异常样本、处理特征冗余及预训练偏差,以及提高异常检测和定位的准确性。原创 2024-12-06 15:10:03 · 1678 阅读 · 0 评论 -
工业异常检测-CVPR2024-新的3D异常数据合成办法和自监督网络IMRNet
Towards Scalable 3D Anomaly Detection and Localization: A Benchmark via 3D Anomaly Synthesis and A Self-Supervised Learning Network原创 2024-12-06 10:54:10 · 1394 阅读 · 0 评论 -
python可视化高纬度特征
可视化网络的特征层,假如resnet网络输出的特征维度是(batch_size,512). 如果要可视化测试集的每个图片的512高维度特征分布呢?embeds = resnet18(x),embeds是(batch_size,512)高维度特征。原创 2024-11-29 17:14:35 · 241 阅读 · 0 评论 -
医疗图像分割U-Net变体之DCSAU-Net
论文名称:DCSAU-Net: A Deeper and More Compact Split-Attention U-Net for MedicalImage Segmentation机构:英国林肯郡 林肯大学,中国 浙江万里学院时间:CBM2022论文:https://arxiv.org/pdf/2202.00972.pdf代码:https://github.com/xq141839/DCS...原创 2024-03-06 11:03:41 · 820 阅读 · 0 评论 -
经典的深度学习图像分割汇总
FCN论文名称:Fully Convolutional Networks for Semantic Segmentation机构:UC Berkeley时间:2014年提出,CVPR 2015,PAMI 2016论文:https://arxiv.org/abs/1411.4038代码:https://github.com/shelhamer/fcn.berkeleyvision.org框架:...原创 2024-03-04 17:46:30 · 895 阅读 · 0 评论 -
人脸关键点数据集WFLW
关键点数据集介绍原创 2024-09-13 18:34:30 · 1075 阅读 · 4 评论 -
Deep Learning-Based Object Pose Estimation:A Comprehensive Survey
基于深度学习的目标姿态估计:一份综合的调研原创 2024-09-12 10:36:05 · 1415 阅读 · 0 评论 -
缺陷检测-Mixed supervision for surface-defect detection:from weakly to fully supervised learning
缺点:(1)分割模块只有下采样,没有上采样,最后的分割精度会下降。(2)且没有跳层连接(类似resnet或者unet结构),浅层信息会丢失,不利于多尺度缺陷检测。原创 2024-02-18 16:42:18 · 864 阅读 · 0 评论 -
实现pytorch版的mobileNetV1
这里是根据网络结构,搭建模型,用于图像分类任务。原创 2024-01-06 18:33:09 · 1018 阅读 · 0 评论 -
轻量化网络-MobileNet系列
(2)不同的是组件不再是一种深度可分离卷积,而是水桶型结构:先1x1卷积通道升维,再深度卷积,再接1x1卷积(也就是逐点卷积)降维,这里与Resnet刚好相反(所以叫。深度可分类卷积:将普通卷积(核大小5x5x3)拆分成深度卷积(核大小5x5x1),逐点卷积(核大小1x1x3),过程如下图。(2)逐点卷积(就是1x1的卷积),逐个点去卷积,一个卷积(核大小1x1x3)去卷8x8x3,得到8x8x1特征图。(1)深度卷积,逐个通道去卷积,一个卷积(核大小5x5x1)去卷12x12x3,得到8x8x3特征图。原创 2024-01-04 17:20:18 · 1838 阅读 · 0 评论 -
shufflenet unit原理和实现
前言解决的问题:分组卷积的输出之和前面部分输入相关。提出shufflenet unit. 在1x1的卷积后,把组内的特征,再分成g组,随机关联到后面的g组,然后对每一组都如此。论文ShufflfleNet: An Extremely Effificient Convolutional Neural Network for Mobile Devices https://arxiv.org/pdf/1707.01083v1.pdfshufflenet unit原理图片(a)原创 2021-08-11 14:17:11 · 503 阅读 · 0 评论 -
PaDiM 无监督异常检测和定位-论文和源码阅读
思路:数据特征的分布被假定为一个多元高斯分布,异常值通常在多元高斯分布中表现为远离数据集的中心(均值向量)的数据点。协方差矩阵可以描述各个特征之间的相关性和离散程度。通过计算数据点相对于协方差矩阵的马氏距离,可以识别潜在的异常点。原创 2023-11-02 11:34:29 · 1157 阅读 · 0 评论 -
efficientAD 推理速度毫秒级-源码阅读
(1)teacher和student网络结构是一样的,只是teacher的最后一个卷积输出通道翻倍。(1)image_ae和image_st是同样的图片,只不过image_ae多了一个颜色数据增强;(1)image_ae和image_st是同样的图片,只不过image_ae多了一个颜色数据增强;(2)student不是在预训练数据集上进行训练,而是在具体的应用项目中无异常图像上训练。(1)teacher是图像分类数据集的预训练模型,或者是这种预训练网络的蒸馏版本;(2)注意:没有bn操作。原创 2023-10-25 21:13:41 · 1731 阅读 · 1 评论 -
pointnet和pointnet++点云分割和分类
(2)论文中n是1024(均匀采样),论文中只用到了(x,y,z)坐标,所以输入是nx3点云矩阵,首先经过mlp(64,64),即两个多层感知机全连接网络,维度变化3->64->64,输出nx64特征向量;(2)网络输入的是Nx(d+C)矩阵,N是点个数,d维坐标,C维点特征,输出矩阵是N'x(d+C'),其中N'是采样后的点个数,C'是点特征向量维度。(3)分割输出:分割分支输出的是nxm的矩阵scores,有n个点,每个点有m个分数,m个分数对应m个语义分割类别,哪个值大,当前点就属于哪个类别。原创 2023-10-17 09:25:05 · 2953 阅读 · 4 评论 -
PF-Net基于深度学习的点云补全网络
cvpr2020 PF-Net点云补全技术原创 2022-12-03 16:27:12 · 7340 阅读 · 76 评论 -
iterative farthest point sample (IFPS or FPS)
迭代最远距离采样,在点云论文PointNet++和PF-Net中用于对点云数据下采样。原创 2022-12-06 10:53:02 · 1273 阅读 · 0 评论 -
cvpr2023-目标检测-Combating noisy labels in object detection datasets
我们都知道数据对于深度学习模型的重要性,但是如何省时省力的得到高质量的数据呢?这就是此文章探讨的问题。原创 2023-03-07 23:23:59 · 2594 阅读 · 2 评论 -
经典论文回顾-YOLOv1(代码详解)
yolo v1代码逐行解析原创 2021-12-22 18:00:22 · 4329 阅读 · 9 评论 -
小目标检测-Augmentation for small object detection
目录1.论文地址2.解决什么问题3.出现问题的原因4.解决办法4.1 过采样4.2 复制粘贴1.论文地址https://arxiv.org/abs/1902.07296https://arxiv.org/abs/1902.072962.解决什么问题检测小目标的能力,往往弱于检测大目标(AP值低2到3倍)。注:0<area<32x32:小目标32x32<area<96x96: 中等目标96x96<area: 大目..原创 2021-10-08 18:22:15 · 530 阅读 · 0 评论 -
CVPR 2018 Saliency Detection 论文
1.Deep Unsupervised Saliency Detection: A Multiple Noisy Labeling PerspectiveJing Zhang1,2, Tong Zhang2,3, Yuchao Dai†1, Mehrtash Harandi2,3, and Richard Hartley21 中国西北工业大学,戴玉超教授;2 澳大利亚国立大学 ;...原创 2018-07-08 15:52:16 · 7232 阅读 · 0 评论 -
【论文】Saliency Detection: A Spectral Residual Approach阅读笔记
一、思路:从信息论的角度看,有效编码可以将图片H中信息分为两部分:$$H(Image) = H(Innovation) + H(Prior Knowledge)$$Innovation变化,即为显著部分;Prior Knowledge先验知识,即为背景部分,冗余部分。相似就代表着冗余。对一个系统而言要最小化视觉的冗余信息,它必须知道输入图片的统计相似性(即所有图片平均特性)。那...原创 2018-06-19 19:40:59 · 1257 阅读 · 0 评论