- 博客(3)
- 收藏
- 关注
原创 PRETRAINING SLEEP STAGING MODELS WITHOUT PATIENT DATA阅读笔记
我们创建了四种训练配置来研究我们的预训练方法的有效性:(i)完全监督,(ii)固定特征提取器,(iii)微调特征提取器,以及(iv)未经训练的特征提取器。当对完整的训练数据进行微调时,微调的特征提取器配置与完全监督的配置相当,并且优于固定的特征提取器配置。我们观察到,这个概念上简单的预训练任务,我们称之为“频率预训练”(FPT),当来自少数受试者(few-subject regime)的数据可用于微调时,与完全监督训练相比,允许深度神经网络以更好的准确性检测睡眠阶段。在预训练阶段,对特征提取器f和分类器。
2024-04-10 10:28:03
1592
1
原创 Self-Supervised Contrastive Learning for Medical Time Series: A Systematic Review阅读笔记
其基本假设是,在嵌入空间中,正对(即相似的例子)应该彼此靠近,而负对(即不同的例子)应该彼此远离。传统的监督学习无法用如此小的标记数据量进行训练,然而,通过对比学习,我们可以使用10,000个未标记的样本对编码器进行预训练,然后使用500个标记样本对模型进行微调。试验判别任务的基本假设是,由于试验间的差异,同一试验的两个样本会比不同试验的样本更相似。换句话说,模型在正对(由过去的数据和正确的下一个观察组成)和负对(由过去的数据和不同的下一个观察组成)上进行训练。它训练编码器根据过去的观测来预测未来的观测。
2024-04-09 17:38:18
2024
原创 Self-Supervised Learning for Time Series: Contrastive or Generative?阅读笔记
将输入样本映射到表示,然后测量相似和不相似样本之间的相对距离,其中最小化相对距离作为优化模型的监督信号。将输入时间序列映射到一个表示,然后用于重建输入样本。所有的代码和数据都在[https://github.com/DL4mHealth/SSL Comparison]上发布。
2024-04-09 11:21:00
1612
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人