预测模型的好坏——精准率(precision)和召回率(recall)画P-R曲线

本文深入解析了模型评估中的关键指标,包括AUC、KS值、精准率和召回率等,详细介绍了混淆矩阵的概念及其在计算精准率和召回率中的应用,并通过实例展示了不同阈值下精准率和召回率的变化趋势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

分类任务时,经常会对模型结果进行评估。评估模型好坏的指标有AUC、KS值等等。这些指标是通过预测概率进行计算的。精准率和召回率是通过混淆矩阵计算出来的,以下是混淆矩阵

 

其中,

TP(True Positive):样本为正,预测结果为正;即正确预测样本为正

FP(False Positive):样本为负,预测结果为正;即错误的预测样本为负

TN(True Negative):样本为负,预测结果为负;即正确预测样本为负

FN(False Negative):样本为正,预测结果为负;即错误预测样本为负

 

精准率(precision):TP / (TP + FP),正确预测为正占全部预测为正的比例

召回率(recall): TP / (TP + FN),正确预测为正占全部正样本的比例

观察上面的公式我们发现,精准率(precision)和召回率(recall)的分子都是预测正确的正类个数(即TP),区别在于分母。精准率的分母为预测为正的样本数,召回率的分母为原来样本中所有的正样本数。

那么精准率和召回率的区别是什么呢,下图是在不同阈值下统计出来的精准率和召回率。通过下图我们发现精准率和召回率并不一定是正相关(但也不一定是负相关)

 我们当然希望精准率和召回率都高,但是现实情况一般不是这样

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值