mysql5.7下载安装配置详细步骤(超详细)【软件下载+环境配置】

本文详细介绍了MySQL的下载、安装过程,包括如何处理安装时的常见问题,如身份验证失败(ERROR1045)。此外,还讲解了如何配置环境变量以便于命令行访问MySQL,并提供了密码重置的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1 下载

 2 安装

3 环境配置 

 4 mysql无法启动报ERROR 1045 (28000): Access denied for user 'root'@'localhost' (using password: YES)

5 MySQL配置环境


1 下载

官方下载地址:MySQL :: Download MySQL Installer

 2 安装

双击下载的安装包

 等待安装器加载

有些小伙伴在加载过程中可能会出现无法验证其身份或者提示你升级安装器

点击继续运行,不要升级

加载完成后出现这个界面

选择

custom——》next 

 选择MySQL5.7 x64

 可以更改位置(建议不要放c盘)

 开始安装

 安装完成后点击next

 next——》next到下面这个界面

Development Computer:开发机,该类型应用将会使用最小数量的内存。

Server Computer:服务器,该类型应用将会使用中等大小的内存。

Dedicated Computer:专用服务器,该类型应用将使用当前可用的最大内存。

在这里我们选择“Development Computer”就足够我们使用了。

设置MySQL密码,建议简单些,要记住 

 选择服务器文件权限

附上翻译,这里我们选择默认就好 

 

 安装

 有的小伙伴在安装的过程中可能出现一些问题,

比如我这里就出现了安装时卡在starting server

报:Feiled to start MySQL Server

这里附上解决方法

此电脑右击——》点击管理

右击服务——》属性

 修改完后回来继续安装

next 

 

finish 

 

安装完成 

3 环境配置 

找到my.ini文件

这个文件路径是前面更改安装路径的时候更改的

innodb_flush_log_at_trx_commit=1 改为

innodb_flush_log_at_trx_commit=0

innodb_buffer_pool_size=128M改为(扩大缓冲池)

innodb_buffer_pool_size=1G

 更改MySQL编码格式

[client]下添加

default-character-set=utf8

[mysql]下添加

character-set-server=utf8

[mysqld]下添加

character-set-server=utf8

 4 mysql无法启动报ERROR 1045 (28000): Access denied for user 'root'@'localhost' (using password: YES)

这很可能是你的密码错了

解决方法如下:

1.跳过登录

在命令行输入以下命令

mysqld --skip-grant-tables(MySQL8以外的版本可以使用)

mysqld -console --skip-grant-tables --shared-memory(MySQL8的版本用这个)

2.输入sql语句:(先将密码置空)

use mysql; (使用mysql数据表)

update user set authentication_string='' where user='root';(将密码置为空)

quit; (然后退出Mysql)

3.重启mysql服务

4.再次登录并更改密码

ALTER USER 'root'@'localhost' IDENTIFIED BY 'root';(更改密码)

 方法借鉴于:ERROR 1045 (28000): Access denied for user ‘root‘@‘localhost‘ (using password: NO)解决方法_西夏♪的博客-CSDN博客

5 MySQL配置环境

以上步骤我们都是在MySQL安装路径的bin目录下才能进入mysql

现在配置环境变量使我们打开命令行就能进入MySQL

右键此电脑——》属性——》高级系统设置——》环境变量——》在系统变量中找到path——》双击——》新建——》复制MySQL安装目录的bin文件夹的路径——》三个确定都要点使更改生效

 测试是否正常

 正常

### Pandas 文件格式读写操作教程 #### 1. CSV文件的读取与保存 Pandas 提供了 `read_csv` 方法用于从 CSV 文件中加载数据到 DataFrame 中。同样,也可以使用 `to_csv` 将 DataFrame 数据保存为 CSV 文件。 以下是具体的代码示例: ```python import pandas as pd # 读取CSV文件 df = pd.read_csv('file.csv') # 加载本地CSV文件 [^1] # 保存DataFrame为CSV文件 df.to_csv('output.csv', index=False) # 不保存行索引 [^1] ``` --- #### 2. JSON文件的读取与保存 对于JSON格式的数据,Pandas 支持通过 `read_json` 和 `to_json` 进行读取和存储。无论是本地文件还是远程 URL 都支持。 具体实现如下所示: ```python # 读取本地JSON文件 df = pd.read_json('data.json') # 自动解析为DataFrame对象 [^3] # 从URL读取JSON数据 url = 'https://example.com/data.json' df_url = pd.read_json(url) # 直接从网络地址获取数据 # 保存DataFrame为JSON文件 df.to_json('output.json', orient='records') ``` --- #### 3. Excel文件的读取与保存 针对Excel文件操作Pandas 使用 `read_excel` 来读取 `.xls` 或 `.xlsx` 格式的文件,并提供 `to_excel` 方法导出数据至 Excel 表格。 注意:需要安装额外依赖库 `openpyxl` 或 `xlrd` 才能正常运行这些功能。 ```python # 安装必要模块 (如果尚未安装) !pip install openpyxl xlrd # 读取Excel文件 df_excel = pd.read_excel('file.xlsx', sheet_name='Sheet1') # 导出DataFrame为Excel文件 df.to_excel('output.xlsx', sheet_name='Sheet1', index=False) ``` --- #### 4. SQL数据库的交互 当涉及关系型数据库时,Pandas 可借助 SQLAlchemy 库连接各种类型的数据库(如 SQLite, MySQL)。它允许直接查询并将结果作为 DataFrame 返回;或者反过来把现有 DataFrame 插入到指定表中。 下面是基于SQLite的一个例子: ```python from sqlalchemy import create_engine # 创建引擎实例 engine = create_engine('sqlite:///database.db') # 查询SQL语句并返回DataFrame query = "SELECT name, salary, department FROM employees" sql_df = pd.read_sql(query, engine) # 计算各部门平均工资 avg_salary_by_dept = sql_df.groupby('department')['salary'].mean() # 将DataFrame存回SQL表 avg_salary_by_dept.to_sql(name='average_salaries_per_department', con=engine, if_exists='replace', index=True) ``` 上述片段说明了如何执行基本SQL命令以及后续数据分析流程[^4]。 --- #### 5. 多层次索引(MultiIndex)的应用场景 除了常规单维度索引外,在某些复杂情况下可能需要用到多级索引结构。这时可以依靠 MultiIndex 构建更加灵活的数据模型。 例如定义一个多层列名体系: ```python arrays = [['A','A','B','B'], ['foo','bar','foo','bar']] tuples = list(zip(*arrays)) index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second']) df_multi_indexed = pd.DataFrame([[0,1,2,3], [4,5,6,7]], columns=index) print(df_multi_indexed) ``` 这段脚本演示了怎样构建一个具有双重分类标签的表格布局[^2]。 --- ### 总结 综上所述,Pandas 是一种强大而易用的数据处理工具包,适用于多种常见文件类型之间的相互转换及其高级特性应用开发之中。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值