奇异值分解
奇异值分解是一种矩阵因子分解方法,是线性代数概念,但在统计学习中被广泛使用,成为其重要工具
主要应用 在主成分分析、潜在语义分析上
奇异值分解的矩阵不需要是方阵,任意矩阵都可以进行分解,都可以表示为三个矩阵的乘积(因子分解)形式,分别是m阶正交矩阵、由降序排列的非负对角线元素组成的m×n矩形对角矩阵和n阶正交矩阵,称为该矩阵的奇异值分解。
矩阵的奇异值分解一定存在,但不唯一。奇异值分解可以看做矩阵数据压缩的一种方法。
奇异值分解可以表示为3个实矩阵乘积的运算,
A=UΣVT
其中U是m阶正交矩阵,V是n阶正交矩阵,Σ是由降序排列的非负的对角元素组成的m×n矩形对角矩阵,满足:
UUT=I
VVT=I
这两条是正交矩阵的性质
Σ=diag(σ1,σ2,σ3……σp)
σ1≥σ2≥σ3≥……≥σp≥0
p=min(m,n)
这样就满足了Σ是降序排序并且非负
UΣVT 称为矩阵A的奇异值分解,σi 称为矩阵A的奇异值,U的列向量称为左奇异向量,V的列向量称为右奇异向量。
注意奇异值分解不要求矩阵A是方阵,这与特征值分解不同,这个任意矩阵就行