机器学习——奇异值分解

本文深入讲解奇异值分解(SVD),一种强大的矩阵分解方法,适用于任意矩阵。SVD在主成分分析、潜在语义分析等领域发挥关键作用。文章阐述了SVD的基本原理,包括正交矩阵、对角矩阵的概念,以及如何通过UΣVT的形式表达原始矩阵,揭示了SVD在数据压缩和特征提取中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

奇异值分解

奇异值分解是一种矩阵因子分解方法,是线性代数概念,但在统计学习中被广泛使用,成为其重要工具
主要应用 在主成分分析、潜在语义分析上
奇异值分解的矩阵不需要是方阵,任意矩阵都可以进行分解,都可以表示为三个矩阵的乘积(因子分解)形式,分别是m阶正交矩阵、由降序排列的非负对角线元素组成的m×n矩形对角矩阵和n阶正交矩阵,称为该矩阵的奇异值分解。
矩阵的奇异值分解一定存在,但不唯一。奇异值分解可以看做矩阵数据压缩的一种方法。

奇异值分解可以表示为3个实矩阵乘积的运算,
A=UΣVT
其中U是m阶正交矩阵,V是n阶正交矩阵,Σ是由降序排列的非负的对角元素组成的m×n矩形对角矩阵,满足:
UUT=I
VVT=I
这两条是正交矩阵的性质
Σ=diag(σ1,σ2,σ3……σp
σ1≥σ2≥σ3≥……≥σp≥0
p=min(m,n)
这样就满足了Σ是降序排序并且非负
UΣVT 称为矩阵A的奇异值分解,σi 称为矩阵A的奇异值,U的列向量称为左奇异向量,V的列向量称为右奇异向量。
注意奇异值分解不要求矩阵A是方阵,这与特征值分解不同,这个任意矩阵就行

练习+解析

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值