pytorch中的tensor

1、什么是tensor?

tensor中文意为张量,提到张量最先能想到物理中的张量。有基础物理知识的人都知道,没有方向只有大小的量称为标量,例如普通数字1, 2, 3等,可以比较大小;既有方向又有大小的量称为矢量,例如物理概念中的作用力,不能够简单的比较大小;在物理中学习单元体应力应变状态的时候提到了张量,张量是一组能够表示某一个微元体应力应变状态的分量的集合。张量(tensor)是pytorch中最基础的一种数结构,熟悉numpy数组的话会发现tensor和numpy数组的操作很相似,但不同之处在于tensor具有更多的属性,相当于表示数组数据在运算过程中的状态,tensor中不仅仅包含了数组数据本身,还包含了dtype,grad,device等属性。

2、tensor的操作

熟悉numpy的话对tensor的操作会感觉很熟悉。导入torch和numpy,从数据创建tensor:

import torch
import numpy as np

# initialize tensor
# # from data
data = [[1, 2], [3, 4]]
tensor_data = torch.tensor(data, dtype=torch.int32)
print(tensor_data)
print(type(tensor_data))
print(tensor_data.shape)

从numpy创建tensor


# from numpy
arr1 = np.array([[4, 5, 6], [7, 8, 9]])
arr_tensor = torch.from_numpy(arr1)
print(arr_tensor)
print(type(arr_tensor))
print(arr_tensor.shape)

其它方式创建tensor:

shape = (2, 3)
rand_t
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值