生物医学信号处理技术在医疗领域的应用
1. 胎儿心电图(fECG)心率变异性分析
在分析胎儿心电图时,首先要识别与母体R峰不重合的胎儿R峰。为检测重叠峰,构建R - R间期的直方图,并在寻找丢失的胎儿R峰过程中考虑双倍长度的间期,利用这些信息构建最终的胎儿心率变异性(fHRV)序列。
该方法在不同信噪比的模拟信号和诺丁汉大学数据库的实验信号上进行了测试。模拟数据有助于改进用于阈值处理的椭圆参数,从而提高了灵敏度。实验时间序列的结果也显示出约90%的高选择性。将此方法与基于时频的方法、抛物线拟合、模板匹配和快速独立成分分析(ICA)算法进行比较,对于真实数据,上述方法和时频方法的准确性表现最佳。
操作步骤如下:
1. 识别与母体R峰不重合的胎儿R峰。
2. 构建R - R间期的直方图。
3. 考虑双倍长度的间期来寻找丢失的胎儿R峰。
4. 构建最终的fHRV序列。
5. 在模拟信号和实验信号上测试该方法。
6. 改进椭圆参数。
7. 与其他方法进行比较。
2. 心磁图(MCG)及其应用
2.1 心磁图概述
心脏产生的磁场约为50 pT,比大脑产生的磁场(约1 pT)大一个数量级以上,这使得心磁图比脑磁图更容易记录。最初的MCG是约50年前由Baule和Mc Fee使用包含数百万匝铜线圈的梯度计测量的。超导量子干涉器件(SQUID)的引入开启了心磁图学的时代。起初使用单个传感器,目前市售设备包含多个MCG导联,定制系统最多可有128个传感器。
MCG的优点包括:
- 传感器无需与皮肤直接接触,便于快速筛查患者,对烧伤患