js777
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
45、硬件感知概率模型中的超参数优化与性能评估
本文探讨了硬件感知概率模型在不同实验条件下的超参数优化与性能评估,重点分析了活动持续时间、评估频率以及超参数组合对测试准确性和成本的影响。通过多组实验数据展示了模型在动态调整复杂度时的表现,并讨论了其在资源受限场景(如边缘设备)中的应用潜力。此外,还涉及鲁棒性分析和时间序列信息的利用,为未来研究方向提供了参考。原创 2025-07-11 20:27:11 · 24 阅读 · 0 评论 -
44、特征剪枝超参数优化在机器学习中的应用
本文探讨了特征剪枝及其超参数优化在机器学习中的应用,重点分析了如何通过合理配置超参数来平衡模型的性能与计算成本。实验基于人体活动识别数据集,详细展示了不同超参数对准确率和成本的影响,并提出了高效的模型切换策略以适应资源受限的嵌入式设备需求。原创 2025-07-11 20:27:01 · 22 阅读 · 0 评论 -
43、实验所用特征
本文详细介绍了在机器学习和边缘计算领域中,如何通过优化特征选择和处理方法提升模型性能并减少资源消耗。实验涵盖了合成数据集的构造、噪声可扩展贝叶斯网络(ns-BN)的应用、模拟与数字质量缩放技术,以及混合信号前端的特征提取方法。同时,深入探讨了特征剪枝对模型效率和鲁棒性的影响,并提供了不同活动持续时间下的实验结果分析,为实际应用提供了有价值的参考。原创 2025-07-11 20:26:53 · 40 阅读 · 0 评论 -
42、硬件感知概率模型的未来工作建议
本文探讨了硬件感知概率模型在未来资源受限的极端边缘设备上的应用前景与发展方向。重点包括扩展模型以优化多维资源(如延迟和能源消耗)、结合深度神经网络与生成概率模型的混合方案、纳入时间序列特性以提高分类准确度、硬件感知的学习过程改进,以及动态调整模型复杂度和推理策略的方法。此外,文章还讨论了该模型在机器人学、控制工程及实时极端边缘应用中的潜力,并通过实验验证其有效性与优势。未来的研究方向涵盖更广泛的应用领域和更高效的优化策略,旨在推动智能设备在低功耗环境下的性能提升。原创 2025-07-11 14:35:39 · 18 阅读 · 0 评论 -
41、硬件感知概率模型:未来研究方向与挑战
本文探讨了硬件感知概率模型在未来资源受限设备中的研究方向与挑战。重点分析了现有技术的局限性,包括未能充分考虑运行时动态变化、缺乏多资源优化支持以及模型复杂度调整的困难。提出了未来的研究方向,如多资源优化框架、动态模型复杂度调整策略、判别性偏差与生成式模型的结合、混合机器学习架构的应用、时间序列感知方法的引入以及增强硬件感知学习的能力。此外,还讨论了对缺失特征的鲁棒性问题和实验验证结果。通过这些研究方向,旨在推动硬件感知概率模型在边缘计算和物联网领域的广泛应用。原创 2025-07-10 14:25:58 · 22 阅读 · 0 评论 -
40、硬件感知概率模型:资源与性能的最佳平衡
本文探讨了硬件感知概率模型在资源受限的边缘计算环境中的应用,重点分析了如何通过引入硬件感知能力,在保证分类性能的同时最大限度地节省资源。文章内容涵盖特征噪声调整、硬件感知系统级成本建模、判别性偏差增强、动态调整策略以及在多个实际场景中的验证结果。实验表明,该模型在人体活动识别、传感器故障应对、混合信号与数字质量缩放等方面具有显著优势,同时对缺失特征和噪声具有鲁棒性,适用于极端边缘节点的部署。原创 2025-07-09 15:48:08 · 21 阅读 · 0 评论 -
39、硬件感知概率模型在边缘计算中的应用与挑战
本文探讨了硬件感知概率模型在边缘计算环境中的应用与挑战。重点分析了其在运行时对不可用信息(如传感器故障)的鲁棒性,以及如何应对显著的资源限制问题。通过动态调整特征配置和模型复杂度,能够在保证性能的前提下优化计算、存储和能源消耗。文章介绍了ns-BNs分类器和概率电路(PC)等关键技术,并结合人体活动识别(HAR)数据集进行了实验验证。结果显示,动态调整策略能够在传感器失效时保持较高的准确度并降低整体成本。最后讨论了未来研究方向,包括混合架构、时间序列建模和更全面的硬件感知学习方法。原创 2025-07-08 13:09:48 · 17 阅读 · 0 评论 -
38、运行时策略:应对资源受限的嵌入式应用挑战
本文探讨了在资源受限的嵌入式系统中优化运行时策略以应对动态变化的挑战。文章分析了现有方法,如选择性执行、级联结构和预训练模型重新配置,并指出了它们在动态环境适应性、硬件感知能力和时间序列特性利用方面的局限性。为解决这些问题,提出了一种结合硬件感知概率模型与动态模型复杂度扩展策略的新方法,并通过人体活动识别(HAR)案例验证其有效性。实验结果表明,该方法在保持高准确度的同时显著降低能耗,并具有更强的鲁棒性和适应性。原创 2025-07-07 11:58:12 · 25 阅读 · 0 评论 -
37、动态调整模型复杂度以实现资源与性能的最优权衡
本文探讨了一种动态调整模型复杂度的策略,以在资源受限的嵌入式设备上实现机器学习任务中资源消耗与性能的最佳平衡。该策略通过在简单模型和复杂模型之间动态切换,根据样本分类难度进行选择,从而在保证准确率的同时显著降低资源开销。文章详细阐述了策略的核心思想、模型选择机制以及具体实现方法,并通过实验验证了其在人体活动识别场景下的有效性与鲁棒性。结果表明,该策略能够在低成本区域达到超越帕累托最优的性能,并能适应运行时变化(如传感器故障)。原创 2025-07-06 11:53:38 · 22 阅读 · 0 评论 -
36、硬件感知 PSDDs 的运行时实现:引言
本文探讨了硬件感知概率子句决策图(PSDDs)的运行时实现,重点分析了其在资源受限嵌入式设备上的动态模型复杂度调整能力。通过结合简单模型与复杂模型的优势,利用贝叶斯最优条件概率和预测类别进行分类难度评估,并在运行时根据任务需求和硬件配置进行模型切换,实现了接近帕累托最优的准确率与成本性能。实验结果表明,该方法在处理传感器故障、缺失特征等运行时变化时具有良好的鲁棒性,特别适用于电池寿命有限的嵌入式场景。原创 2025-07-05 16:49:07 · 14 阅读 · 0 评论 -
35、噪声可扩展贝叶斯网络:运行时缺失特征
本文探讨了在资源受限的物联网(IoT)和边缘计算设备上,使用噪声可扩展贝叶斯网络分类器(ns-BNs)处理运行时缺失特征和传感器故障的问题。文章提出了一种动态调整模块,能够在运行时根据设备状态选择帕累托最优的特征配置,从而在准确度和成本之间实现最佳权衡。实验基于人体活动识别(HAR)数据集,验证了所提方法在传感器故障场景下的鲁棒性和低开销优势。此外,还介绍了模型复杂度切换策略,通过在简单与复杂模型间智能切换,进一步优化嵌入式系统的性能。未来方向包括混合机器学习架构、时间序列特性建模以及硬件感知的学习算法设计原创 2025-07-04 11:32:34 · 17 阅读 · 0 评论 -
34、硬件感知概率电路在边缘计算中的应用与优化
本文介绍了硬件感知概率电路(PCs)在边缘计算中的应用与优化方法。通过结合硬件属性和概率推理,PCs能够在资源受限的边缘设备上高效实现复杂的机器学习任务。文章探讨了硬件感知成本度量、搜索策略、实验验证、判别性偏差学习以及动态调整模块等关键技术,并展示了其在多个实际场景中的优异性能。未来研究方向包括混合架构、时间序列感知和硬件感知学习等内容。原创 2025-07-03 10:16:33 · 35 阅读 · 0 评论 -
33、硬件感知概率电路中的有偏 PSDD 学习实验
本文介绍了一种新的硬件感知概率电路分类方法 D-LearnPSDD,通过引入判别性偏差提升生成式模型 LearnPSDD 的分类性能。实验表明,D-LearnPSDD 在多个数据集上优于传统生成式和判别式分类器,并在处理缺失特征时表现出更强的鲁棒性。此外,通过优化变量树结构和施加可分解性、平滑性、确定性等结构约束,实现了模型大小、性能和判别能力之间的良好平衡,为资源受限嵌入式系统中的高效机器学习提供了新思路。原创 2025-07-02 14:27:54 · 19 阅读 · 0 评论 -
32、判别性偏差学习:提升概率子句决策图的分类性能
本文介绍了D-LearnPSDD方法,通过引入判别性偏差来提升概率子句决策图(PSDDs)在分类任务中的性能。实验表明,该方法结合了生成式和判别式模型的优点,在多个标准机器学习数据集上表现出卓越的准确度和对缺失特征的鲁棒性。此外,还探讨了变量树的选择、互信息与条件互信息的影响,以及动态调整策略在时间序列应用中的效果。原创 2025-07-01 10:22:47 · 18 阅读 · 0 评论 -
31、利用判别性偏差学习概率子句决策图进行分类任务
本文探讨了如何通过引入判别性偏差来改进概率子句决策图(PSDDs)的学习过程,以提高分类任务的性能并增强对缺失数据的鲁棒性。研究提出了D-LEARNPSDD算法,该算法通过强制特征变量基于类别变量进行条件化,在资源受限的嵌入式系统中实现了更高的分类准确度和模型效率。实验验证表明,D-LEARNPSDD在多个基准数据集上优于传统生成式模型,并且在处理缺失特征方面表现优异。此外,文章还讨论了时间序列信息的整合以及动态模型切换策略,为未来在机器人学、控制工程等领域的应用提供了可能性。原创 2025-06-30 11:56:06 · 18 阅读 · 0 评论 -
30、硬件感知概率电路的实验验证:帕累托最优权衡
本文探讨了硬件感知概率电路在多个标准机器学习数据集上的实验验证,展示了其在显著降低推理成本的同时几乎不牺牲分类准确度的性能优势。通过特征和传感器集缩放、精度调整以及帕累托最优配置选择,该方法实现了资源受限嵌入式设备中的高效计算。此外,提出的动态模型复杂度切换策略能够在运行时应对意外变化(如传感器故障),保持较高的准确度并进一步降低成本。实验结果表明,该方法在静态和动态场景下均优于传统模型,为现实世界应用提供了更高的鲁棒性和灵活性。原创 2025-06-29 10:58:30 · 35 阅读 · 0 评论 -
29、硬件感知概率电路的帕累托最优权衡提取
本文探讨了在资源受限的边缘设备中,如何通过硬件感知概率电路(PC)实现机器学习任务的高效处理。基于帕累托最优权衡提取策略,综合考虑嵌入式感知/推理管道各阶段的能量消耗,提出了一种能够在准确度与硬件成本之间取得最佳平衡的方法。通过SCALESI算法和模型复杂度切换策略,在运行时动态调整系统配置,从而优化性能并降低能耗。实验验证表明,该方法在人体活动识别(HAR)等基准测试中实现了显著的成本节约,同时保持了高准确度,并在面对传感器故障或特征缺失时表现出良好的鲁棒性。未来的研究方向包括混合机器学习方案、时间序列建原创 2025-06-28 09:06:44 · 20 阅读 · 0 评论 -
28、硬件感知系统级成本:在边缘设备中实现资源高效概率模型
本文探讨了在资源受限的边缘设备中实现高效的概率机器学习模型,引入了硬件感知系统级成本(Hardware-Aware Cost)的概念。通过量化从传感器接口、特征提取到推理过程各阶段的能量消耗,该方法能够识别出全局最优配置,并通过动态调整模块适应运行时环境变化。实验表明,该策略能够在显著节约资源的同时保持高任务准确度,并展现出对噪声和缺失特征的鲁棒性,为物联网和嵌入式AI应用提供了新的优化思路。原创 2025-06-27 12:06:03 · 33 阅读 · 0 评论 -
27、硬件感知概率电路:迈向高效的边缘计算
本文探讨了概率命题决策图(PSDDs)在硬件感知系统中的应用,重点分析了其在资源受限的边缘设备上实现高效推理和分类任务的能力。通过引入可分解性、平滑性和确定性等结构约束,PSDDs能够高效进行推理,并支持多项式时间内的复杂查询。结合硬件感知的成本度量与帕累托最优权衡提取策略,所提出的方法能够在显著降低能耗的同时保持较高的分类准确度。实验部分以人体活动识别(HAR)为案例,验证了该方法在传感器故障和动态运行时条件下的鲁棒性和适应性。未来的工作将探索将该策略扩展到更广泛的机器学习模型以及考虑时间序列属性的应用场原创 2025-06-26 11:06:33 · 17 阅读 · 0 评论 -
26、硬件感知概率电路学习的实验评估
本博文介绍了一种基于判别性偏差的新型概率电路学习方法 D-LEARNPSDD,并通过多个基准数据集对其性能进行了系统评估。文章重点分析了该方法在分类准确率、模型复杂度、缺失特征和传感器故障下的鲁棒性等方面的表现,探讨了其在资源受限嵌入式设备中的应用潜力。实验结果表明,D-LEARNPSDD 在保持高表现力的同时,具备良好的可处理性和高效性。原创 2025-06-25 09:27:01 · 20 阅读 · 0 评论 -
25、硬件感知概率电路在嵌入式传感应用中的实证评估
本文探讨了硬件感知概率电路(PC)在嵌入式传感应用中的优化方法及其性能评估,特别关注资源受限的边缘设备场景。通过多个标准数据集的实证实验,包括人体活动识别(HAR)、机器人导航和语音活动检测,验证了所提出方法在显著降低推理与传感器成本的同时几乎不牺牲准确度的优势。文中详细介绍了推理成本模型、传感器成本估算、对传感器失效的鲁棒性分析以及动态调整模块的设计与效果。结果表明,该方法在低成本区域表现出色,尤其适用于电池供电且资源受限的嵌入式系统。原创 2025-06-24 10:47:38 · 20 阅读 · 0 评论 -
24、深入探讨模拟质量缩放:在硬件感知机器学习中的应用
本文深入探讨了模拟质量缩放在硬件感知机器学习中的应用,重点分析了如何在模拟领域进行特征提取以降低功耗和计算复杂度。通过动态调整特征质量,系统能够在不同信噪比环境和应用场景下实现显著的成本节约,同时保持较高的准确度和鲁棒性。实验验证了该方法在语音活动检测(VAD)等应用中的有效性,并展示了其在资源受限边缘设备中的广泛应用前景。原创 2025-06-23 09:44:28 · 13 阅读 · 0 评论 -
22、硬件感知概率模型中的数字质量缩放
本文探讨了在资源受限的边缘设备上如何通过数字质量缩放实现高效能的特征提取。利用噪声可扩展贝叶斯网络(ns-BN)对特征提取过程进行建模,结合成本函数与目标函数的优化策略,在多个公开数据集上的实验表明该方法可以在显著降低能量消耗的同时保持较高的分类准确度。原创 2025-06-21 15:27:16 · 11 阅读 · 0 评论 -
21、噪声可扩展贝叶斯网络(ns-BN)的应用案例介绍
本文介绍了噪声可扩展贝叶斯网络(ns-BN)在物联网边缘设备中的应用,探讨了其在混合信号、数字和模拟质量缩放场景下的性能。ns-BN通过建模硬件噪声对特征提取的影响,实现了资源受限环境下的成本与准确度权衡优化,并展示了对传感器故障和缺失特征的鲁棒性。实验结果证明,ns-BN能够在不同信噪比和精度配置下显著降低能耗,同时保持高分类准确度,是实现硬件感知概率模型的理想选择。原创 2025-06-20 13:46:32 · 19 阅读 · 0 评论 -
20、实现硬件感知的局部帕累托最优特征质量调整
本文提出了一种基于噪声可扩展贝叶斯网络分类器(ns-BN)的方法,通过局部帕累托最优搜索来调整特征质量,从而在资源受限的边缘设备上实现最优的硬件感知成本与准确度权衡。实验结果显示,该方法在多种应用场景下能够显著节约成本,同时保持最小的准确度损失,并且在处理传感器故障和动态环境变化时表现出色。原创 2025-06-19 09:23:21 · 16 阅读 · 0 评论 -
19、噪声可伸缩贝叶斯网络分类器:实现硬件感知的机器学习
本文介绍了噪声可伸缩贝叶斯网络分类器(ns-BN),一种专为资源受限边缘设备设计的硬件感知机器学习模型。ns-BN通过引入不同噪声级别和质量的特征,实现了在有限准确度损失下显著节约资源成本的目标。文章详细阐述了ns-BN的模型结构、推理过程、实验结果及其在人体活动识别、语音活动检测等场景中的应用优势,并探讨了其在动态条件下的鲁棒性和运行时调整策略。原创 2025-06-18 14:42:52 · 28 阅读 · 0 评论 -
18、硬件感知成本模型总结与展望
本文深入探讨了硬件感知成本(CHA)模型在物联网(IoT)设备和边缘计算环境中的能效优化作用。文章详细阐述了硬件感知成本的定义、定制化方法及其在不同类型系统中的应用,并通过语音活动检测(VAD)和人体活动识别(HAR)等实际案例展示了其优化效果。同时,还介绍了基于硬件感知成本的动态调整策略和概率电路模型(PSDDs),以提高分类任务的性能与鲁棒性。最后,文章展望了未来的发展方向,包括优化其他资源、混合机器学习方案及时间序列建模的应用潜力。原创 2025-06-17 09:00:22 · 17 阅读 · 0 评论 -
17、动态调整运行时策略的成本
本文讨论了在资源受限的嵌入式系统中,如何通过动态调整运行时策略来实现高效能与低能耗的平衡。重点分析了硬件实现中的控制块及其能量消耗模型(CT),并介绍了如何在运行时提取帕累托最优权衡以优化准确度和成本之间的关系。此外,还探讨了动态调整策略的具体应用、实验结果以及其在不同场景下的性能优势,包括对传感器故障和环境变化的鲁棒性。最后展望了未来的发展方向,如混合架构、时间序列建模和硬件感知学习等。原创 2025-06-16 12:06:12 · 21 阅读 · 0 评论 -
16、动态调整运行时策略的成本
本文探讨了在边缘计算和物联网设备中实现动态调整运行时策略的成本问题。通过分析硬件感知成本(CHA)及其组成部分(如感知成本、推理成本和动态调整成本),文章展示了如何通过动态调整特征提取前端的配置来优化性能,同时显著降低能耗。实验结果表明,该方法在多个数据集上均实现了高效的成本节约,且准确度损失较低。此外,动态调整模块在面对传感器故障时表现出良好的鲁棒性,为资源受限的嵌入式应用提供了可靠的解决方案。原创 2025-06-15 11:15:55 · 12 阅读 · 0 评论 -
15、探索概率电路中的推理成本:理论与应用
本文探讨了概率电路中推理成本的计算方法及其对系统性能的影响。分析了推理成本的主要组成部分,包括加法操作、乘法操作、内存交换和缓存交换,并讨论了比特精度对推理成本的影响。同时,文章提出了多种优化策略,如降低比特精度、简化概率电路结构以及优化内存访问,以减少资源受限设备中的能量消耗和计算开销。通过实际应用案例,如人体活动识别(HAR)、语音活动检测(VAD)、自动驾驶汽车和智能家居设备,展示了推理成本优化的实际效果。最终总结了推理成本优化的最佳实践,为开发者提供了高效节能的推理任务实现方案。原创 2025-06-14 16:22:25 · 10 阅读 · 0 评论 -
14、理解特征提取成本:从资源受限设备的角度出发
本文探讨了在资源受限的边缘设备中,如何理解和优化特征提取成本。从数字和模拟领域的特征提取方法入手,分析了特征数量、复杂性及运算精度对能量消耗的影响,并通过实验验证了优化策略的有效性。文章还提出了混合领域和自适应特征提取的未来研究方向,旨在进一步降低能耗并提升系统性能。原创 2025-06-13 10:00:51 · 18 阅读 · 0 评论 -
12、特征提取成本:优化嵌入式设备的能效
本文探讨了嵌入式设备中特征提取的能效优化问题,分析了特征提取成本的主要影响因素,包括特征数量与复杂性、运算精度等。通过对比数字域和模拟域中的特征提取能耗差异,提出了基于精度调整和硬件设计的优化策略,并结合具体案例验证了这些方法在实际应用中的有效性。此外,文章还讨论了动态调整策略以及未来发展方向,旨在为资源受限的嵌入式系统提供高效的特征提取解决方案。原创 2025-06-11 14:26:35 · 16 阅读 · 0 评论 -
11、硬件感知概率模型在边缘计算中的应用
本文探讨了硬件感知概率模型在边缘计算中的应用,特别是在资源受限的极端边缘设备上的感官嵌入式管道。文章详细介绍了感官嵌入式流程的三个主要构建块:可调特征提取前端、硬件感知概率模型和动态调整模块,并通过案例分析展示了如何优化这些模块以实现资源高效的机器学习任务。此外,还讨论了动态调整模块的实时应用及其在复杂环境下的鲁棒性与性能评估。原创 2025-06-10 15:06:28 · 12 阅读 · 0 评论 -
10、概率电路:从基础到应用
本文系统介绍了概率电路(Probability Circuits, PC)的基本概念、结构约束及其在资源受限的边缘设备中的应用。从概率电路的节点类型和参数构成出发,详细阐述了其计算语义和推理机制,并讨论了可分解性、平滑性和确定性等关键性质。文章还展示了概率电路在分类任务、缺失特征处理以及硬件感知优化中的具体应用,并通过实验验证了其高效性和鲁棒性。最后,提出了未来研究方向,包括延迟优化、混合架构设计和时间序列建模等。原创 2025-06-09 09:04:55 · 20 阅读 · 0 评论 -
9、硬件感知贝叶斯网络:实现资源高效机器学习
本博文介绍了硬件感知贝叶斯网络(ns-BN)及其在资源受限设备上的应用。ns-BN不仅能够表示变量之间的概率关系,还能考虑特征质量、成本和分类准确度的权衡。文章详细探讨了ns-BN的结构、推理过程、学习方法以及其在混合信号质量缩放、数字质量缩放、模拟质量缩放等场景中的表现。此外,还讨论了ns-BN如何应对运行时缺失特征的情况,并提出了动态模型复杂度切换策略以优化资源消耗。实验结果表明,ns-BN能够在显著降低成本的同时保持较高的分类准确度,为资源高效的机器学习提供了有效解决方案。原创 2025-06-08 09:38:02 · 33 阅读 · 0 评论 -
8、概率论基础及其在机器学习中的应用
本博客系统介绍了概率论的基础概念及其在机器学习中的关键应用,涵盖了概率分布、条件概率、独立性、贝叶斯规则等核心主题。同时深入探讨了贝叶斯网络和概率电路等概率模型的结构与推理机制,并讨论了它们在嵌入式系统中处理资源与质量权衡的实际应用场景。通过实验验证了概率模型在分类任务中的有效性、鲁棒性以及面对噪声和缺失数据时的优势。原创 2025-06-07 09:59:53 · 19 阅读 · 0 评论 -
7、硬件感知概率模型在极端边缘计算中的应用与优化
本博客探讨了硬件感知概率模型在极端边缘计算环境中的应用与优化,重点介绍了ns-BNs和增强的LEARNPSDD算法如何处理资源受限、动态变化的挑战。通过引入特征噪声意识和判别性偏差,这些模型能够在分类准确度和系统成本之间实现最佳权衡,同时对传感器故障和缺失特征保持鲁棒性。实验验证表明,所提出的方法在多个数据集上表现优异,具有广泛的应用潜力。原创 2025-06-06 09:30:21 · 17 阅读 · 0 评论 -
6、硬件感知概率模型在运行时策略中的应用
本文探讨了在资源受限的物联网和边缘计算设备上,如何利用硬件感知概率模型(如噪声可扩展贝叶斯网络和概率子句决策图)动态调整运行时策略。重点介绍了通过运行时调整模块和模型切换策略来应对传感器故障、特征缺失以及资源限制的问题,并展示了其在人体活动识别任务中的高效性和鲁棒性。实验结果表明,该方法能够在低成本情况下保持接近帕累托最优的准确度与性能,为未来混合架构设计和时间序列建模提供了研究方向。原创 2025-06-05 13:13:08 · 12 阅读 · 0 评论 -
5、硬件感知概率电路:在资源受限的边缘设备中实现高效分类
本文介绍了如何通过硬件感知概率电路在资源受限的边缘设备上实现高效的分类任务。文章重点讨论了概率命题决策图(PSDDs)的应用、系统级成本度量(如感知成本和推理成本)、帕累托最优权衡提取策略以及模型复杂度切换策略,这些方法能够在显著降低能耗的同时保持较高的分类准确度。实验结果表明,所提出的方法在人体活动识别等场景中表现出色,并具有较强的鲁棒性和动态适应能力。原创 2025-06-04 11:34:43 · 33 阅读 · 0 评论 -
4、硬件感知概率模型在边缘设备中的应用
本文探讨了硬件感知概率模型在资源受限的边缘设备中的应用,重点介绍了噪声可伸缩贝叶斯网络分类器(ns-BN)如何通过编码硬件特性来实现特征质量、成本和准确度之间的最优权衡。文章涵盖了ns-BN的基本原理、局部帕累托最优特征质量调整策略(SCALEFEATURENOISE),以及其在混合信号、数字和模拟前端中的三个实际使用案例。此外,还讨论了在运行时动态调整模型配置以应对设备状态变化和环境不确定性的策略,展示了这些方法在处理缺失特征和资源限制方面的鲁棒性和有效性。原创 2025-06-03 14:35:06 · 14 阅读 · 0 评论