借助 Cloudflare D1 和 Drizzle 在 Astro 上实现全栈

使用 Cloudflare D1 和 Drizzle ORM 将后端添加到 Astro 项目的分步指南

安装 Astro

这非常简单——运行以下命令:

npm create astro@latest
  • 选择 Empty 作为模板
  • 选择使用最严格的 TypeScript
  • 默认值对其他一切都很好

然后您可以 cd 进入您的项目并运行 npm run dev

添加 Cloudflare 适配器

在您的项目中,您现在可以运行:

npx astro add cloudflare

对所有事情说“是”,然后提交所有内容并将其推送到 Github。

部署到 Pages

前往创建 Pages应用程序,然后单击“连接到 git”以创建页面

使用 Github 存储库的应用程序。

请务必选择 Astro Framework 预设!

安装 wrangler 并登录

如果您尚未执行此操作,请安装 wrangler 并通过运行以下命令登录:

npm i -g wrangler
wrangler login

创建 D1 数据库

我们将创建两个数据库,一个用于生产,一个用于预览版本。

为此,请运行以下命令:

wrangler d1 create d1-demo-prod-db
wrangler d1 create d1-demo-preview-db

创建 wrangler.toml 文件

我们需要一个 wrangler.toml 文件,其中包含我们刚刚创建每个数据库中的 database_id

# wrangler.toml
node_compat = true

[[d1_databases]]
binding = "DB"
database_name = "d1-demo-prod-db"
database_id = "xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx"
preview_database_id = "DB"

[env.preview]
name = "preview"
[[env.preview.d1_databases]]
binding = "DB"
database_name = "d1-demo-preview-db"
database_id = "yyyyyyyy-yyyy-yyyy-yyyy-yyyyyyyyyyyy"

将 .wrangler 添加到 .gitignore

echo .wrangler >> .gitignore

更新 astro.config.ts

我们需要像这样添加 D1 绑定:

// astro.config.ts
import {
   
    defineConfig } from "astro/config";

import cloudflare from "@astrojs/cloudflare";

// https://astro.build/config
export default defineConfig({
   
   
	output: "server",
	adapter: cloudflare({
   
   
		runtime: {
   
   
			mode: "local",
			type: "pages",
			bindings: {
   
   
				DB: {
   
   
					type: "d1",
				},
			},
		},
	}),
});

安装 Drizzle 依赖项

运行以下命令:

npm i drizzle-orm
npm i -D better-sqlite3 drizzle-kit cross-env @types/node

创建 drizzle.config.ts

这就是我们的 drizzle.config.ts 文件的样子:

// drizzle.config.ts
import type {
   
    Config } from "drizzle-kit";

const {
   
   
	LOCAL_DB_PATH
### 如何在 Cloudflare 平台上实现 AI 功能 Cloudflare 提供了一系列工具服务来支持开发者在其平台上集成部署人工智能应用。通过 Workers R2 存储服务,可以构建无服务器架构下的机器学习模型推理环境[^1]。 #### 利用 Cloudflare Workers 部署轻量级 AI 应用程序 Cloudflare Workers 是一种事件驱动的计算平台,允许编写 JavaScript 或 WebAssembly 函数,在球分布的数据中心执行。对于简单的图像识别、自然语言处理等任务,可以直接在 Worker 中加载预训练好的 TensorFlow.js 模型并进行实时预测: ```javascript addEventListener('fetch', event => { event.respondWith(handleRequest(event.request)) }) async function handleRequest(request) { const modelUrl = 'https://example.com/path/to/model.json'; const tfModel = await loadTensorFlowJSModel(modelUrl); // 假设请求体包含了待分类图片数据 let imgData = await request.arrayBuffer(); let predictionResult = await predictImageClass(tfModel, imgData); return new Response(JSON.stringify(predictionResult), { status: 200 }); } // 加载远程 TF.JS 模型文件 function loadTensorFlowJSModel(url){ return fetch(url).then(response=>response.text()).then(str=>{ var script=document.createElement('script'); script.innerHTML=str; document.head.appendChild(script); // 这里假设已经定义好了 global 变量 `model` 来保存解析后的模型实例 return window.model; }) } ``` 此代码片段展示了如何利用 Fetch API 获取外部托管的 TensorFlow.js 格式的神经网络权重参数,并完成一次前向传播得到输入样本所属类别概率分布的结果[^2]。 #### 结合 Durable Objects 构建持久化会话管理机制 当涉及到更复杂的交互场景时,比如聊天机器人对话状态跟踪,则可借助于 Durable Object 特性保持上下文连续性。每个 DO 实例代表独立的状态容器,能够安地存储用户特定的信息而不受其他并发访问干扰[^3]。 #### 使用 KV 数据库缓存频繁查询结果加速响应速度 针对某些固定模式的任务(如垃圾邮件过滤),预先将常见案例及其判定结论写入到 Key-Value Store 中作为白名单/黑名单对照表;每当收到新消息时先尝试命中本地缓存以减少不必要的重复运算开销[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Willin 老王躺平不摆烂

感谢你这么好看还这么慷慨

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值