Description
Given A,B,C, You should quickly calculate the result of A^B mod C. (1<=A,C<=1000000000,1<=B<=10^1000000).
Input
There are multiply testcases. Each testcase, there is one line contains three integers A, B and C, separated by a single space.
Output
For each testcase, output an integer, denotes the result of A^B mod C.
Sample Input
3 2 4 2 10 1000
Sample Output
124
高次幂取模,套公式搞定。
(B>=phi(C))
#include<set> #include<map> #include<ctime> #include<cmath> #include<stack> #include<queue> #include<bitset> #include<cstdio> #include<string> #include<cstring> #include<iostream> #include<algorithm> #include<functional> #define rep(i,j,k) for (int i = j; i <= k; i++) #define per(i,j,k) for (int i = j; i >= k; i--) #define loop(i,j,k) for (int i = j;i != -1; i = k[i]) #define lson x << 1, l, mid #define rson x << 1 | 1, mid + 1, r #define ff first #define ss second #define mp(i,j) make_pair(i,j) #define pb push_back #define pii pair<int,LL> #define in(x) scanf("%d", &x); using namespace std; typedef long long LL; const int low(int x) { return x&-x; } const double eps = 1e-4; const int INF = 0x7FFFFFFF; const int mod = 1e9 + 7; const int N = 1e6 + 10; LL n, m, x; char s[N]; LL phi(LL x) { LL res = 1; for (LL i = 2; i*i <= x; i++) { if (x%i) continue; res *= i - 1; for (x /= i; !(x%i); res *= i, x /= i); } return res * max(x - 1, 1LL); } void get() { if (strlen(s) <= 10) { sscanf(s, "%lld", &x); return; } LL g = phi(m); x = 0; for (int i = 0; s[i]; i++) x = (x * 10 + s[i] - '0') % g; x = x + g; } int main() { while (scanf("%lld%s%lld", &n, s, &m) != EOF) { LL ans = 1; get(); for (; x; x >>= 1) { if (x & 1) (ans *= n) %= m; (n *= n) %= m; } printf("%lld\n", ans % m); } return 0; }
也可以直接用十进制快速幂,效率稍低
#include<set> #include<map> #include<ctime> #include<cmath> #include<stack> #include<queue> #include<bitset> #include<cstdio> #include<string> #include<cstring> #include<iostream> #include<algorithm> #include<functional> #define rep(i,j,k) for (int i = j; i <= k; i++) #define per(i,j,k) for (int i = j; i >= k; i--) #define loop(i,j,k) for (int i = j;i != -1; i = k[i]) #define lson x << 1, l, mid #define rson x << 1 | 1, mid + 1, r #define ff first #define ss second #define mp(i,j) make_pair(i,j) #define pb push_back #define pii pair<int,LL> #define inone(x) scanf("%d", &x); #define intwo(x,y) scanf("%d%d", &x, &y); using namespace std; typedef unsigned long long LL; const int low(int x) { return x&-x; } const double eps = 1e-4; const int INF = 0x7FFFFFFF; const int mod = 1e9 + 7; const int N = 1e6 + 10; int n, m; char s[N]; int main() { while (scanf("%d%s%d", &n, s, &m) != EOF) { int ans = 1; per(i, strlen(s) - 1, 0) { int res = n; rep(j, 1, 9) { if (s[i] - '0' == j) ans = 1LL * ans * res % m; res = 1LL * res * n % m; } n = res; } printf("%d\n", ans); } return 0; }