动手深度学习笔记(三十六)6.6. 卷积神经网络(LeNet)

本文介绍了经典的卷积神经网络LeNet,包括其结构、在手写数字识别中的应用,以及如何在Fashion-MNIST数据集上训练LeNet模型。LeNet由卷积编码器和全连接层组成,通过卷积层、池化层和Sigmoid激活函数处理图像,降低了模型复杂度。在训练中,LeNet展示了良好的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

动手深度学习笔记(三十六)6.6. 卷积神经网络(LeNet)

6. 卷积神经网络

6.6. 卷积神经网络(LeNet)

通过之前几节,我们学习了构建一个完整卷积神经网络的所需组件。 回想一下,之前我们将softmax回归模型( 3.6节)和多层感知机模型( 4.2节)应用于Fashion-MNIST数据集中的服装图片。 为了能够应用softmax回归和多层感知机,我们首先将每个大小为 28 × 28 28×28 28

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

落花逐流水

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值