最多可以参加的会议数目--贪心算法

这是一篇关于LeetCode上的一道题目——最多可以参加的会议数目的解题博客。文章通过贪心算法提供了解决方案,即从第一天开始遍历,选择结束时间最早的会议参加,并利用优先队列实现。作者jerry_nju详细解释了思路并提供了代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

LeetCode

最多可以参加的会议数目

给你一个数组 event ,其中 events[i] = [startDayi, endDayi] ,表示会议 i 开始于 startDayi ,结束于 endDayi 。

你可以在满足 startDayi <= d <= endDayi 中的任意一天 d 参加会议 i 。注意,一天只能参加一个会议。

请你返回你可以参加的 最大 会议数目。

示例1:

输入:events = [[1,2],[2,3],[3,4]]
输出:3
解释:你可以参加所有的三个会议。
安排会议的一种方案如上图。
第 1 天参加第一个会议。
第 2 天参加第二个会议。
第 3 天参加第三个会议。

示例 2:

输入:events= [[1,2],[2,3],[3,4],[1,2]]
输出:4
示例 3:

输入:events = [[1,4],[4,4],[2,2],[3,4],[1,1]]
输出:4

示例 4:

输入:events = [[1,100000]]
输出:1

示例 5:

输入:events = [[1,1],[1,2],[1,3],[1,4],[1,5],[1,6],[1,7]]
输出:7

提示:

  • 1 <= events.length <= 10^5
  • events[i].length == 2
  • 1 <= events[i][0] <= events[i][1] <= 10^5

解法:贪心算法

解题思路:

我们可以从第一天开始遍历,然后找到这一天可以参加的所有会议,贪心的选择一个结束时间最早的会议参加,因为结束时间最早的会议能参加的机会比较少

因此我们可以用一个优先队列来实现,带有注释的代码如下

class Solution {
        public int maxEvents(int[][] events) {
        //首先排序:开始时间小的在前。这样是方便我们顺序遍历,把开始时间一样的都放进堆
        Arrays.sort(events, (o1, o2) -> o1[0] - o2[0]);
        //小顶堆
        PriorityQueue<Integer> pq = new PriorityQueue<>();
        //结果、开始时间、events下标、有多少组数据
        int res = 0, last = 1, i = 0, n = events.length;
        while (i < n || !pq.isEmpty()) {
            //将start相同的会议都放进堆里
            while (i < n && events[i][0] == last) {
                pq.offer(events[i++][1]);
            }
            //pop掉当前天数之前的
            while (!pq.isEmpty() && pq.peek() < last) {
                pq.poll();
            }
            //顶上的就是俺们要参加的
            if (!pq.isEmpty()) {
                pq.poll();
                res++;
            }
            last++;
        }
        return res;
    }
}

解法来源

作者:jerry_nju
链接:https://leetcode-cn.com/problems/maximum-number-of-events-that-can-be-attended/solution/chun-cui-de-tan-xin-mei-yong-you-xian-dui-lie-dai-/
来源:力扣(LeetCode)
e-attended/solution/chun-cui-de-tan-xin-mei-yong-you-xian-dui-lie-dai-/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值