- 博客(209)
- 资源 (9)
- 收藏
- 关注
原创 【NVIDIA-B200】ubuntu22.04安装cpupower-intel_pstate: CPU model not supported
官方包优先:5.15.0-153-generic 内核的官方包是最优选择,无需源码编译,自动处理依赖和库路径。驱动适配:Intel CPU 提示 “model not supported” 时,放弃,改用,功能完全满足频率调节(如切换性能 / 节能模式、设置固定频率)。验证标准能显示和具体频率信息,即表示所有问题解决。后续可通过cpupower。
2025-09-11 15:54:57
45
原创 【NVIDIA-B200】 ‘CUDA driver version is insufficient for CUDA runtime version‘
NVIDIA-B200环境,从报错信息,导致 NCCL 测试无法正常调用 GPU 资源。
2025-09-09 15:23:17
98
原创 【NVIDIA-B200】真实生产环境 nvidia-smi gpu驱动580.82.07 最新安装步骤和nvidia-b200 580.82.07驱动安装脚本
记录脚本执行结果,输出结束时间与总耗时,为部署效率分析提供数据。日志初始化→基础依赖+DOCA部署→GPU驱动+Fabric Manager安装→CUDA 13.0部署→NCCL+MPI配置→内核模块优化→RDMA网络开机配置→执行时间统计。
2025-09-09 14:46:57
170
原创 【NVIDIA-H200】nccl-test报错common.cu(966): error: identifier “ctaPolicy“ is undefined以及H200单机all_reduce
从编译日志来看,即使更新了nccl-tests源码,仍然出现ctaPolicy未定义的错误,这说明nccl-testsctaPolicy是 NCCL 库中与线程策略相关的变量,不同版本的 NCCL 可能对其定义不同)。
2025-09-05 18:29:52
34
原创 NVIDIA B200 8 节点 all_reduce_perf 测试结果分析(含异常点与趋势解读)
综合测试结果,NVIDIA B200 8 节点集群的all_reduce通信表现可概括为 “异常点明确可规避、正常场景性能优异、模式选择灵活正确性无忧:无错误、无越界、无中断,8 节点集群通信可靠,满足分布式任务的数据一致性要求;性能特征清晰:128MB 小数据量性能偏低(可通过优先选择in-place规避),256MB 及以上数据量带宽逐步饱和至 389GB/s,贴合 8 节点 NVLink Switch 拓扑的互联能力;模式选择灵活。
2025-09-04 19:05:25
34
原创 NVIDIA B200 2 节点 all_reduce_perf 测试结果整体分析
归约计算无偏差,2 节点间数据同步完全一致,不存在计算错误或数据丢失;二是 “无内存越界” 表明软件(MPI 库 / NVSHMEM)与 B200 硬件交互逻辑正常,无非法内存访问风险;三是测试完整执行无中断,排除硬件故障、软件崩溃等稳定性问题,为性能分析提供可靠数据基础。测试结果优异:正确性达标、性能逼近硬件极限、模式选择灵活、场景适配广泛,是分布式 AI 训练与 HPC 计算的优质硬件方案。从并列数据可直接确认,两种模式的测试正确性均拉满:一是所有数据量下,,单元素 4 字节),覆盖。
2025-09-04 18:02:08
30
原创 【NVIDIA B200】4.reduce_scatter_perf NVIDIA B200 在 Reduce_Scatter 操作中的性能深度剖析
这一阶段的性能充分体现了 B200 的架构优势:双 die MCM 设计通过 10TB/s NV-HBI 接口实现的片内通信,减少了跨 GPU 数据传输的中间环节,在 8 卡配置下实现了比单 die 设计高 15% 的有效带宽。该阶段验证了 B200 的通信 - 计算融合引擎的有效性,其增长效率(每倍数据量的带宽提升率)达到 102%,高于 H100 的 95%,反映了 Blackwell 架构在中数据量处理时的协同优势。
2025-09-03 13:31:25
355
原创 【NVIDIA B200】3.reduce_scatter_perf NVIDIA B200 8-GPU 系统 All-Gather 性能深度解析:架构优势与应用场景
在 8-GPU 系统中,每个 GPU 持有 1/8 的数据集片段,经过 All-Gather 操作后,所有 8 个 GPU 都将拥有完整的数据集。这一阶段的性能充分体现了 B200 的架构优势:HBM3e 显存(8TB/s 带宽)与 NVLink 4.0(单链路 400GB/s)的协同设计,确保了大数据量传输时不会出现显存瓶颈。该阶段验证了 B200 的 NVLink 4.0 互连在中数据量传输时的优异可扩展性,其增长效率(每倍数据量的带宽提升率)达到 98%,高于 H100 的 92%。
2025-09-03 13:26:20
28
原创 【NVIDIA B200】2.all_reduce_perf NVIDIA B200 8-GPU 系统 All-Reduce 性能深度解析
指标单位计算方式物理意义size字节 (B)每个 GPU 参与归约的数据块大小count元素数size/4(float 类型)数据块包含的浮点元素数量time微秒 (us)多次迭代平均值完成一次 All-Reduce 操作的耗时algbwGB/s算法带宽,反映计算效率busbwGB/s总线带宽,考虑实际物理传输量(8 卡系统中每个数据需传输 7 次)#wrong计数数据验证错误次数(0 表示无错误)
2025-09-03 13:22:06
248
原创 【NVIDIA B200】1.alltoall_perf 单机性能深度分析:基于 alltoall_perf 测试数据
指标单位定义size字节 (B)每个 GPU 发送到其他 GPU 的单块数据大小count元素数数据块包含的 float 类型元素数量(1float=4 字节)time微秒 (us)完成一次 All-to-All 操作的耗时algbwGB/s算法带宽,计算公式:(总数据量) / 时间busbwGB/s总线带宽,考虑实际物理传输量的有效带宽#wrong计数数据验证错误的次数(0 表示无错误)
2025-09-03 13:13:26
244
原创 【nvidia-B200】实际生产报错NVRM: nvAssertFailedNoLog: Assertion failed: pIOVAS != NULL @ io_vaspace.c:601
升级 NVIDIA 驱动到 R545/R550 数据中心版本(解决 IOVA bug,这是性能差的根本原因);重启服务器(清理驱动残留资源,消除日志中的 NVRM 错误);验证 NVLink/PCIe 链路(确保 8 卡互联使用高速链路,而非单卡 PCIe 共享带宽)。完成这 3 步后,ncccl-test的all_reduce带宽应能提升至100GB/s 以上(取决于服务器的 NVLink/NVSwitch 配置),恢复正常性能。
2025-09-03 11:52:28
194
原创 【ACP】2025-最新-疑难题解析- 练习一汇总
他们对您的方案比较满意,作为一个特别看重用户体验的创业公司,他们有一个比较担心的问题:在后端云服务器 ECS 实例相对空闲时,可能会触发减少 ECS 实例的伸缩活动,这时候运行在即将移出伸缩组的 ECS 实例上的应用会被终止,那么发起这些应用的用户的体验会变差。:在使用阿里云的负载均衡 SLB 实例时,做了如下健康检查的配置:响应超时时间为 5 秒,健康检查间隔为 2 秒,不健康阈值为 3,健康阈值为 3,即对于确认一个后端服务器 ECS 实例是健康的,需要连续三次得到正常响应。以下说法哪一项是正确的?
2025-08-31 14:33:40
107
原创 【ACP】2025-最新-疑难题解析- 练习四汇总
针对日常业务流量购买包年包月 ECS 实例”,无法覆盖 “业务高峰期的临时额外资源需求”,且包年包月是长期固定成本,对于 “临时高峰” 的资源弹性需求,会造成不必要的成本冗余(日常外的高峰资源仍需额外付费)。虽然抢占式存在被回收的可能,但结合弹性伸缩的 “自动补充” 能力,可平衡成本与资源需求,有效解决 “成本较高” 的痛点。阿里云对 LVS 定制了 DDoS 攻击防御(B)、采用 LVS 集群部署(C)、优化 keepalived(LVS 高可用组件)性能(D),均属于四层 LVS 的定制化内容。
2025-08-31 11:08:57
66
原创 【ACP】2025-最新-疑难题解析- 练习二汇总
全球加速是优化公网访问的,负载均衡是分发流量的,公网 NAT 网关是处理公网 IP 的,高速通道是建私网连接但不直接提供固定私网地址功能。C 是客户端加密方式,D 是 ECS 云盘加密,都不属于 OSS 服务器端加密。某企业想使用云服务器 ECS + 负载均衡 SLB + 弹性伸缩 (Auto Scaling) 的架构搭建一个企业级门户网站,技术负责人对于负载均衡和弹性伸缩配合使用没有经验,于是将他理解的两种产品配合使用的一些技术细节列成了一个表单,并请作为架构师的您帮他做一下鉴别,以下哪些项是正确的?
2025-08-30 23:59:32
111
原创 【ACP】2025-最新-疑难题解析- 练习三汇总
使用阿里云弹性伸缩 (Auto Scaling) 时,创建了伸缩组,指定了 “伸缩最小实例数 (台)” 为 5,“伸缩最大实例数 (台)” 为 8,设定了正确的伸缩配置,并添加了伸缩规则为 “增加 3 台 ECS 实例”,创建了基于该伸缩规则的定时任务 (运行时间设置为 1 小时后)。它的优点是速度快,效率高,对某些特定的场景来说非常适合。由于其业务特性,不定期会有理财套餐的秒杀、促销活动,为了能够应对更大、更具偶发性的业务压力,需要全面考虑应用、数据库等层面的扩展,以下说法正确的有哪些?
2025-08-30 16:31:08
178
原创 【ACP】2025-最新-疑难题解析-12
A. 作为 VPC 和本地 IDC 的中间路由器,负责交换数据包B. VBR 支持源地址策略路由C. 在三层子接口模式下,可以识别或附加 VLAN 标签D. 每个 VBR 可以创建多张路由表,实现灵活的路由管理分析答案:AC。解析A 选项:VBR(边界路由器)作为 VPC 和本地 IDC 之间的中间路由器,承担着数据包交换的功能,该选项正确。B 选项:VBR 不支持源地址策略路由,该选项错误。C 选项。
2025-08-30 15:43:00
54
原创 【ACP】2025-最新-疑难题解析-11
所以正确答案是 BC。所以正确答案是 BC。内部网络用户或服务器内部发起的攻击,是在安全组所控制的网络边界之内发生的,安全组无法对内部的攻击行为进行防范,所以该选项正确。:数据驱动型攻击通常是利用应用程序或系统对数据处理的漏洞来发起的,安全组作用于网络层,无法对应用层的数据内容及相关漏洞进行检测和防御,不能防止数据驱动型的攻击,该选项正确。:安全组的功能聚焦于网络流量的访问控制,比如允许或拒绝特定 IP、端口的访问等,并不具备检测和拦截病毒软件、文件的能力,无法防止传送已感染病毒的软件和文件,该选项正确。
2025-08-29 23:32:23
121
原创 【nvidia-B200】生产报错common.h:14:10: fatal error: mpi.h: No such file or directory
在 Ubuntu 22.04 环境下,你的nccl.sh脚本执行报错的核心问题是和。
2025-08-29 17:59:55
60
原创 【ACP】2025-最新-疑难题解析-10
选项:A. 路由器B. 交换机C. 公网网段D. 私网网段E. NAT 网关分析A 选项:路由器(VRouter )是 VPC 的核心组件,用于路由表配置,实现不同交换机、子网间的流量转发,是 VPC 必要组件,A 正确。B 选项:交换机(VSwitch )用于划分不同子网,连接云资源(如 ECS ),是 VPC 构建网络的基础,B 正确。C 选项:VPC 可仅用于私网通信,不一定需要公网网段,公网网段不是必要组件,C 错误。D 选项。
2025-08-29 15:42:11
66
原创 【ACP】2025-最新-疑难题解析-9
选项:A. 标签B. SSH 密钥对C. 事件通知D. 实例 RAM 角色E. 生命周期挂钩F. 实例自定义数据分析A 选项:标签可用于标识、分类 ECS 实例,弹性伸缩支持通过标签管理实例,属于伸缩配置特性,A 正确。B 选项:SSH 密钥对用于实例的安全登录,弹性伸缩可配置该特性,B 正确。C 选项:事件通知是弹性伸缩的通知功能,不属于 “自定义 ECS 实例配置” 的特性,C 错误。D 选项。
2025-08-29 13:28:30
399
原创 【ACP】2025-最新-疑难题解析-8
综上,答案是 B,因为通过 Bucket 授权策略添加 IP 访问条件是 OSS 实现 IP 访问限制的正确配置方式,其他选项存在功能描述错误或逻辑不符。综上,答案是 A,因为通过安全组入方向规则拒绝所有内外网 IP 对 3389 端口的 TCP 访问,可全面限制该端口,其他选项存在限制不完整的问题。综上,答案是 B,因为 CDN 的主要价值就是通过边缘节点加速内容分发,提升网站访问速度,其他选项不符合 CDN 的功能定位。综上,答案是 C,因为 ECS 磁盘快照实际存储在 OSS,其他选项存在描述错误。
2025-08-27 23:53:10
35
原创 【ACP】2025-最新-疑难题解析-7
本题需结合 UDP 协议 “快速、无连接、不保证可靠” 的特点,筛选对实时性要求高、可容忍丢包的场景(视频、推送、聊天、实时识别 ),排除依赖可靠传输的场景(邮件 ),同时注意域名解析场景中 SLB UDP 负载均衡的适用性边界。本题需区分 SLB Listener 的核心配置(端口、策略、健康检查 )与实例属性(IP 地址 )、服务器组配置(实例个数 )的差异,明确 Listener 是 “监听请求 + 分发规则 + 健康检查” 的集合。B. 每个 Pod 都拥有自己独立的网络栈和 IP 地址。
2025-08-26 00:09:41
38
原创 【ACP】2025-最新-疑难题解析-6
A. 生命周期挂钩B. 实例自定义数据C. 定时任务D. 冷却时间分析答案:AB。解析A(生命周期挂钩 ):生命周期挂钩允许在 ECS 实例伸缩过程(如创建、删除 )中插入自定义操作(如初始化脚本、配置加载 ),满足复杂自定义需求,正确。B(实例自定义数据 ):创建 ECS 实例时,可通过自定义数据注入脚本、配置(如 cloud-init ),实现实例初始化自定义,正确。C(定时任务 ):定时任务用于按时间触发伸缩行为(如扩容 / 缩容 ),不涉及实例创建后的自定义设置,错误。
2025-08-25 23:11:43
506
原创 【ACP】2025-最新-疑难题解析-5
A. 目标网段B. 下一跳C. 下一跳类型D. 源地址分析答案:ABC。解析A(目标网段 ):路由条目的核心是定义 “目标网段”(如 192.168.0.0/24 ),明确流量要到达的网络范围,正确。B(下一跳 ):指定流量到达目标网段后,下一步转发的 IP 地址或出口(如网关 IP ),正确。C(下一跳类型 ):说明下一跳的属性(如网关、VPC 接口等 ),辅助设备识别转发方式,正确。D(源地址 ):路由条目聚焦 “流量的目标与转发路径”,不涉及源地址。
2025-08-25 20:06:29
407
原创 【ACP】2025-最新-疑难题解析-4
A. 实例 RAM 角色B. 生命周期挂钩C. SSH 密钥对D. 标签E. 实例自定义数据F. 事件通知分析答案:ACDE。解析A(实例 RAM 角色 ):弹性伸缩可配置 ECS 实例的 RAM 角色,让实例具备访问阿里云其他服务(如 OSS )的权限,实现权限统一管理,属于伸缩配置支持的特性正确。B(生命周期挂钩 ):生命周期挂钩是弹性伸缩 “伸缩流程” 中的功能(用于在实例伸缩时插入自定义操作 ),不属于 “伸缩配置”(定义实例基础属性 )的范畴错误。
2025-08-24 23:53:40
70
原创 从 Hopper 到 Blackwell:NVIDIA GB200/B200/H200/H100 的 NVLink、nv_peer_mem 与集群通信技术深度对比
在 AI 大模型的竞赛中,算力的 “量”(单卡 FLOPS)已不再是核心竞争力,而算力的 “质”(设备间的协同效率)才是决定胜负的关键。NVIDIA 的 GB200、B200、H200、H100 在 NVLink、nv_peer_mem 和集群通信上的差异,本质是对 “如何让 GPU 更高效协同” 这一问题的不同答案。对于企业和研究者而言,理解这些 “隐形技术” 的差异,不仅能帮助选择合适的硬件,更能把握 AI 算力演进的底层逻辑 —— 未来的 AI 算力,必然是 “计算与通信深度融合” 的产物。
2025-08-22 15:34:25
78
原创 NVIDIA GB200 架构详解及与 B200/H200/H100 的区别
GB200:超大规模 AI 训练与推理的终极解决方案,适合需要处理十万亿参数模型的顶级 AI 研究机构和云服务提供商。B200:高性能推理与计算的全能选手,适合企业级大模型部署和高性能计算场景。H200:性价比突出的过渡型产品,适合中小型 AI 项目和边缘计算需求。H100:传统 AI 与 HPC 的经典选择,适合预算有限的企业升级现有基础设施。
2025-08-22 15:27:34
217
原创 【NVIDIA-B200】生产报错 Test CUDA failure common.cu:1035 ‘system not yet initialized‘
当测试 CUDA 时出现 “common.cu:1035'system not yet initialized'” 错误,通常意味着 CUDA 运行时环境未正确初始化,这往往与驱动程序或系统配置问题相关。
2025-08-21 11:46:50
433
原创 Linux 服务管理从入门到精通:systemd 全解析与 service 命令实用指南
若要将自己的脚本或应用做成服务,手动创建单元文件即可。例如有创建ini[Unit]Description=我的应用服务After=network.target # 依赖网络,网络就绪后启动[Service]Type=simple # 简单类型:启动命令直接运行,不fork子进程User=myapp # 用myapp用户运行(避免root权限)WorkingDirectory=/opt/myapp # 工作目录ExecStart=/opt/myapp/bin/myapp # 启动命令。
2025-08-18 11:43:17
66
原创 InfiniBand 与 RoCE 协议介绍
InfiniBand 是高性能互联的 “标杆”,以极致的低延迟、高可靠性适用于对性能要求苛刻的场景(如超算、大规模 AI 训练);而 RoCE 通过以太网实现 RDMA,平衡了性能与成本,成为数据中心和云计算的主流选择。两者均基于 RDMA 技术,核心目标是解决传统网络的 “CPU 瓶颈” 和 “延迟瓶颈”,推动高性能计算和分布式系统的发展。
2025-08-14 15:57:17
136
原创 【nvidia-B200】实战生产解决nccl-test all_reduce_perf性能差问题
NVLink 链路未激活重新插拔 NVLink 桥接器,确保物理连接到位;进入服务器 BIOS,启用 “NVLink Controller” 选项;更新 GPU 固件至≥1.0.30(联系厂商获取 B200 专用固件)。NCCL 版本过低或未优化卸载 test5 的旧版 NCCL,从 NVIDIA 官方源安装与 test9 一致的版本(建议≥2.19):# 添加NVIDIA源(Ubuntu 22.04)# 安装兼容NCCLGPU 驱动版本不兼容。
2025-08-14 11:07:17
146
原创 【nvidia-B200】Test CUDA failure common.cu:1087 ‘CUDA-capable device(s) is/are busy or unavailable‘
虽然你的 CUDA 驱动(12.8)与 nvcc 版本(12.8)匹配,但需确保 NCCL 库与 CUDA 12.8 兼容。虽然 CUDA 驱动(12.8)与 nvcc 版本匹配,但 NCCL 库版本可能不兼容 CUDA 12.8,导致初始化失败。NCCL 测试依赖 GPU 间的高速通信(如 NVLink 或 PCIe),链路异常可能导致 “设备不可用” 错误。编译时链接的 NCCL 库与系统实际安装的版本不一致,可能导致运行时错误。如有需要,更新 NCCL(参考 NVIDIA 的。
2025-08-14 10:47:22
207
原创 [nvidia-GB200]高端GPU gb200 驱动安装解读及gb200一键化安装脚本,复制即可安装
【代码】[nvidia-GB200]高端GPU gb200 驱动安装解读及gb200一键化安装脚本,复制即可安装。
2025-08-07 11:19:56
462
原创 [nvidia-GB200] gb200测试报告3 nccl-test all_reduce_perf 测试分析【第一手资料】
本次 NCCL 测试显示,由 18 台服务器、72 块 NVIDIA GB200 组成的集群在。
2025-08-07 10:56:20
622
原创 [nvidia-GB200] gb200测试报告2 nccl-test all_reduce_perf 测试性能记录【第一手资料】
【代码】[nvidia-GB200] gb200测试报告2 nccl-test all_reduce_perf 测试性能记录【第一手资料】
2025-08-07 10:51:33
78
原创 [nvidia-GB200] gb200测试报告1 nccl-test all_reduce_perf 测试性能记录【第一手资料】
该状态适合启动需要 GPU 加速的应用(如 AI 训练、科学计算等),无需额外排查硬件或驱动问题。输出来看,系统中的 4 块 NVIDIA GB200 GPU 状态。
2025-08-07 10:38:56
123
2
原创 【nvidia GB200】2. gb200安装报错解读-CUDA driver version is insufficient for CUDA runtime version
显示的驱动版本低于运行时要求(例如:驱动 570.158.01 但运行时是 12.5,而 12.5 要求驱动≥555.42.02),需。,具体表现为驱动版本过低,无法支持当前安装的 CUDA 运行时版本。根据步骤 1 和 2 的结果,需确保驱动版本 ≥ 运行时所需的最低版本。首先需要明确系统中实际安装的驱动版本和 CUDA 运行时版本,以判断哪里不匹配。通过以上步骤,可解决驱动与运行时版本不匹配的问题,使 NCCL 测试正常运行。根据 NVIDIA 官方兼容性矩阵,每个 CUDA 运行时版本都有对应的。
2025-08-06 20:26:18
182
原创 【nvidia GB200】1. gb200安装报错解读but no Vulkan ICD loader was detected on this system
两个警告均不影响 GPU 的计算功能(CUDA、NCCL 等),仅与图形界面和 Vulkan 相关。若服务器仅用于计算(无图形需求),可忽略这些警告,驱动已正常安装。若需图形功能或 Vulkan 支持,按上述建议安装缺失依赖后重新安装驱动即可。安装完成后,可通过nvidia-smi命令验证驱动是否成功加载:bashnvidia-smi若能正常显示 GPU 信息,则驱动安装成功。nvidia-smi。
2025-08-06 15:37:56
84
读闪付卡号软件uid cuid
2023-08-14
FlashThief U盘小偷
2010-01-04
WIN32API手册
2008-12-25
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人