[nvidia-GB200] gb200测试报告1 nccl-test all_reduce_perf 测试性能记录【第一手资料】

目录

一、核心版本信息

二、GPU 硬件与状态详情(4 块 GPU 均正常)

 nvidia-smi信息:

三、进程状态

四、 测试性能记录1

1.nccl-test all_reduce_perf  1节点: 测试性能记录

2.nccl-test all_reduce_perf  2节点: 测试性能记录

3.nccl-test all_reduce_perf  4节点: 测试性能记录

4.nccl-test all_reduce_perf  8节点: 测试性能记录

5.nccl-test all_reduce_perf  10节点: 测试性能记录

6.nccl-test all_reduce_perf  12节点: 测试性能记录


一、核心版本信息

  • NVIDIA-SMI 版本:570.158.01
    (NVIDIA System Management Interface 版本,与驱动版本一致,用于管理 GPU 设备)
  • 驱动版本(Driver Version):570.158.01
    (安装的 NVIDIA GPU 驱动版本,属于 570 系列,稳定性和兼容性适用于数据中心级 GPU)
  • CUDA 版本(CUDA Version):12.8
    (该驱动支持的最高 CUDA 运行时版本,即系统中可安装≤12.8 的 CUDA 工具包,无需升级驱动即可兼容)
### NVIDIA GB200 NVL72 规格与信息 #### 架构概述 NVIDIA GB200 NVL72 是一款先进的液冷机架解决方案,集成了最新的 Blackwell 系列 GPU 技术。该系统由 36 个 NVIDIA GB200 Grace Blackwell 超级芯片组成,其中包括 72 个基于 NVIDIA Blackwell 的 GPU 和 36 个 NVIDIA Grace CPU[^2]。 #### 连接技术 GB200 NVL72 利用了第五代 NVIDIA NVLink 技术来实现实现高效的互连通信。这种连接方式使得整个系统能够作为一个单一的大规模 GPU 来运作,极大地提升了数据传输速度和处理效率。 #### 性能表现 在 GPT-MOE-1.8T 模型推理测试中,GB200 NVL72 展现出卓越的性能优势。其单卡每秒吞吐量达到了 HGX H100 的 30 倍,这表明了新架构下显著增强的推理能力和更高的性价比[^4]。 #### 配置详情 GB200 NVL72 在一个标准机架内配置了 72 个 GPU 和 18 个双 GB200 计算节点。此外,还有一种配置是在两个独立机架中共部署 72 个 GPU 并配备相同数量的计算节点。这样的设计既满足了大规模并行运算的需求,又兼顾了灵活性和扩展性[^3]。 ```python # Python 示例代码展示如何模拟 GB200 NVL72 中的一个基本计算单元之间的通讯机制 import numpy as np class GPUNode: def __init__(self, id): self.id = id def communicate(self, other_node): print(f"Node {self.id} communicating with Node {other_node.id}") nodes = [GPUNode(i) for i in range(72)] # 创建 72 个 GPU 节点实例 for i in range(len(nodes)): nodes[i].communicate(nodes[(i + 1) % len(nodes)]) # 模拟环形拓扑结构下的相邻节点间通讯 ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

清风 001

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值