R-NASH系统:硬件设计、映射与维护全解析
1. R-NASH系统基础与STDP学习机制
R-NASH系统运用两种方法实现各种重新配置:
- 自适应阈值 :当神经元触发时,其阈值会在特定范围内增加;若神经元未触发,阈值则会衰减。在LIF神经元中,通过额外的加法器来调整阈值,调整值(ΔThres.)根据神经元是否触发来选择。当神经元触发时,阈值增加直至达到最大值;反之,阈值衰减直至达到最小值。这样,利用自适应阈值,神经元的触发模式能够与输入速率相平衡。不过,不平衡的权重可能导致权重值较高的神经元达到最大触发率,从而抑制其他神经元触发,使系统无法以胜者全得的机制进行学习。
- 权重归一化 :STDP学习模块的目标是在学习期间保持神经元的平均权重不变。
STDP学习的更新机制如下:通过比较突触后和突触前尖峰的时间步长,在线STDP模块将其分为两类:
- 若突触前神经元的时间早于突触后神经元,则权重增加一个固定的Δw值。
- 若突触前神经元的时间晚于突触后神经元,则权重减少一个固定的Δw值。
这里以16个时间步长和固定的权重变化为例,以降低整体复杂度,并且该值可通过NI提供的内存接口重新编程。
2. R-NASH初始映射
2.1 映射的重要性
将神经形态系统分解为通过片上网络连接的神经元组时,划分和放置是至关重要的问题,因为它们会严重影响性能。例如,将两个相连的神经元放置得相距较远,会导致系统中出现关键延迟路径,增加功耗,并在分组交换网络中引入更多热耗散。