
人工智能
文章平均质量分 77
jwwkyjspt
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
全链路自主构建智慧科研写作系统——融合LLM语义理解、多智能体任务协同与n8n自动化工作流构建
AI Agent科研研究系统(包括AI Agent提供快速arxiv论文快速检索生成相关论文知识,通过AI Agent自主使用RAG等技术提高写作内容深度,多AI Agent互相沟通帮助论文从生成到修改到完善论文多步走。3.目前主流的LangChain结合RAG(检索增强生成),Fine-Tuning(微调),LoRA技术实现AI Agent。AI Agent(AI Agent是通过agent和大模型结合具有人类一定能力的智能体)。微调的意义(微调只需调整大模型,并不需要重新训练大模型,有效节省算力)原创 2025-08-19 18:00:11 · 647 阅读 · 0 评论 -
AI大模型+Meta分析:助力发表高水平SCI论文
R语言拥有完整有效的数据处理、统计分析与保存机制,可以对数据直接进行分析和显示,命令格式简单、结果可读性强,包含众多针对Meta分析软件包,是进行Meta整合分析及评价的有效平台。是针对某一科研问题,根据明确的搜索策略、选择筛选文献标准、采用严格的评价方法,对来源不同的研究成果进行收集、合并及定量统计分析的方法,现已广泛应用于。1)Meta诊断分析(t2、I2、H2、R2、Q、QE、QM等统计量)专题四、如何利用AI+R语言Meta分析与回归分析、混合模型构建。专题五、AI+R语言Meta诊断分析进阶。原创 2025-08-14 17:07:26 · 913 阅读 · 0 评论 -
文献计量学可视化全流程解析:基于Citespace/VOSviewer/R的技术实现与高效SCI论文写作策略
Citespace和vosviewer是使用最广泛的文献信息可视化软件工具,在理工、经管、法学、教育、农学、文史、医学、艺术等学科中普遍应用,发文量逐年显著上升。本课程将采用理论与实践相结合,通过文献计量学讲解、高效选题、数据库检索数据下载、软件使用等八个专题详细讲解,让学员系统全面的掌握文献计量学的基本理论和知识;最终实现从主题确定、数据分析绘图、文章框架与写作,全流程掌握一篇文献信息可视化分析报告(论文)的思路逻辑与技术方法。2.WOS与CNKI数据导入、清洗方法。4.共现网络图绘制参数选择与解读。原创 2025-07-02 10:16:02 · 397 阅读 · 0 评论 -
遥感云大数据在灾害、水体与湿地领域典型案例实践及GPT模型应用
相比于ENVI等传统的遥感影像处理工具,GEE在处理海量遥感数据方面具有不可比拟的优势,一方面提供了丰富的计算资源,另一方面其巨大的云存储节省了科研人员大量的数据下载和预处理的时间,是遥感数据的计算和分析可视化方面代表世界该领域最前沿水平,是遥感领域的一次革命。专题涉及光学和雷达数据处理、机器学习算法应用、反演精度评估、变量重要性分析、结果可视化、栅格与矢量转换等内容,将演示如何利用红树林的生境特征信息(如地形、与大海相连等)对分类结果进行精细处理,实现高精度分布图的绘制。影像掩码、裁剪和镶嵌等;原创 2025-07-01 15:06:15 · 481 阅读 · 0 评论 -
“AI大语言模型+”助力大气科学相关交叉领域实践技术应用
GPT生成转化代码,将数据转化为WPS可读取的二进制格式。4.2模型堆叠:使用mlxtend库或自定义方法实现模型堆叠,结合不同模型的预测结果作为新的特征,训练一个新的模型。2.4时间序列分割:对于时间序列数据,使用时间顺序分割数据,确保训练集中的数据点时间上早于测试集中的数据点。5.1性能指标:根据问题类型(分类或回归)选择合适的评估指标,如准确度、召回率、F1分数、AUC值、均方误差。1.2数据探索:通过统计摘要、可视化方法(如直方图、箱线图)来理解数据的分布、异常值情况和变量之间的关系。原创 2025-07-01 15:05:51 · 734 阅读 · 0 评论 -
“成像光谱遥感技术中的AI革命:ChatGPT在遥感领域中的应用
遥感技术主要通过卫星和飞机从远处观察和测量我们的环境,是理解和监测地球物理、化学和生物系统的基石。ChatGPT是由OpenAI开发的最先进的语言模型,在理解和生成人类语言方面表现出了非凡的能力。重点介绍ChatGPT在遥感中的应用,人工智能在解释复杂数据、提供见解和帮助决策过程方面的多功能性和强大性,这些都对遥感应用领域,比如环境监测、灾害管理、城市规划等至关重要。集成的卫星、机载和近景地面高光谱数据的处理和混合像元分。无人机图像的机器学习分类模型的构建和应用。模型数据的处理与数据管道的构建。原创 2025-06-30 15:01:42 · 653 阅读 · 0 评论 -
智能办公与科研革命:ChatGPT+DeepSeek大模型在论文撰写、数据分析与AI建模中的实践指南
随着人工智能技术的快速发展,大语言模型如ChatGPT和DeepSeek在科研领域的应用正在为科研人员提供强大的支持。这些模型通过深度学习和大规模语料库训练,能够帮助科研人员高效地筛选文献、生成论文内容、进行数据分析和优化机器学习模型。ChatGPT和DeepSeek能够快速理解和生成复杂的语言,帮助研究人员在撰写论文时提高效率,不仅生成高质量的文章内容,还能优化论文结构和语言表达。在数据分析方面,这些模型能够迅速处理和分析大量数据,帮助提取有价值的规律,提升实验效率。第一章、2024大语言模型最新进展与C原创 2025-06-30 14:59:20 · 214 阅读 · 0 评论 -
智慧科研写作AI Agent多维赋能暨基于 LLM 的语义理解、多智能体系统的任务协同及 n8n 工作流的自动化集成实践技术应用
实战落地”为核心,七章内容从LLM原理与科研痛点解析起步,逐步深入文献检索Agent(集成PubMed/arXiv API)、写作协同Agent(多Agent任务规划)、n8n自动化流水线搭建、模型微调与Prompt工程等核心技术模块,每章均含代码实操(如OpenAI API摘要生成、n8n工作流演示)与真实案例演练,确保学员从理论到系统开发全面掌握。AutoGen多Agent协作流程(规划Agent、写作Agent、校对Agent)科研写作环节解析:文献查找、资料整理、写作草稿、内容润色。原创 2025-06-12 17:47:28 · 321 阅读 · 0 评论 -
AI赋能生态学暨“ChatGPT+”多技术融合在生态系统服务中的实践技术应用与论文撰写
情景分析方法,通过构建不同的土地利用情景,深入分析生态系统服务的变化与相互作用,为土地政策的制定提供理论依据。随着全球城市化进程的加速与人类活动的频繁,土地利用及生态系统服务面临巨大的压力,水土流失、植被退化、生物多样性丧失等环境问题日益严重。GPT根据文章内容自动生成相关的R或Python代码,提供回归分析、相关性分析等代码模板,,优化统计方法的选择与应用。复现某篇生态学研究文章中的空间分析与可视化部分,生成土地利用变化的热图和生态系统服务功能图,使用AI优化结果可视化。原创 2025-02-19 15:42:39 · 1105 阅读 · 0 评论 -
2025最新“科研创新与智能化转型‘‘暨AI智能体开发与大语言模型的本地化部署、优化技术
5、微调(Fine-Tuning)技术详解(微调的基本原理、微调在大语言模型中的作用、准备一个用于微调的数据集、常见的微调方法,如PEFT、LoRA等、不同任务的微调策略、微调过程中的常见问题与解决方案)1、检索增强生成(RAG)技术详解(RAG的基本原理、RAG在大语言模型中的作用和优势、RAG的系统架构、RAG检索结果与生成结果相结合的方法、RAG知识库的构建方法)7、量化技术详解(量化的基本概念、量化在模型优化中的重要性、量化的不同方法,如:静态量化、动态量化、混合量化等、量化处理的步骤)原创 2025-02-12 15:42:32 · 332 阅读 · 0 评论 -
DeepSeek,又有大消息!
2月9日,国产AI大模型DeepSeek官网显示,DeepSeek-V3 API服务的45天优惠价格体验期已结束,从2月9日开始将调整为新的价格:每百万输入tokens 0.5元(缓存命中)/2元(缓存未命中),每百万输出tokens 8元。而在2月9日价格调整后,输入token费用统一变为每百万2元,不管缓存是否命中;缓存未命中时的价格翻倍,涨幅为100%;此前DeepSeek在优惠期内API价格为每百万输入tokens 0.1元(缓存命中)/ 1元(缓存未命中),每百万输出tokens 2元。原创 2025-02-10 15:41:38 · 221 阅读 · 0 评论 -
大语言模型赋能机器学习暨:ChatGPT与Python融合助力科研学者快速掌握机器学习核心技术
7、PyTorch常用工具包及API简介(torchvision(transforms、datasets、model)、torch.nn、torch.optim、torch.utils(Dataset、DataLoader))1、统计数据的描述与可视化(数据的描述性统计:均值、中位数、众数、方差、标准差、极差、四分位数间距等;2、卷积神经网络的基本原理(什么是卷积核、池化核?4、张量(Tensor)的运算(加法、减法、矩阵乘法、哈达玛积(element wise)、除法、幂、开方、指数与对数、近似、裁剪)原创 2025-02-06 14:32:39 · 718 阅读 · 0 评论 -
AI赋能生态学暨“ChatGPT+”多技术融合在生态系统服务中的实践技术应用与论文撰写
情景分析方法,通过构建不同的土地利用情景,深入分析生态系统服务的变化与相互作用,为土地政策的制定提供理论依据。随着全球城市化进程的加速与人类活动的频繁,土地利用及生态系统服务面临巨大的压力,水土流失、植被退化、生物多样性丧失等环境问题日益严重。GPT根据文章内容自动生成相关的R或Python代码,提供回归分析、相关性分析等代码模板,,优化统计方法的选择与应用。复现某篇生态学研究文章中的空间分析与可视化部分,生成土地利用变化的热图和生态系统服务功能图,使用AI优化结果可视化。原创 2025-02-05 15:51:59 · 956 阅读 · 0 评论 -
Python人工智能在气象中的实践技术应用
Python是功能强大、免费、开源,实现面向对象的编程语言,在数据处理、科学计算、数学建模、数据挖掘和数据可视化方面具备优异的性能,这些优势使得Python在气象、海洋、地理、气候、水文和生态等地学领域的科研和工程项目中得到广泛应用。对于的气象海洋领域的专业人员,Python是进行机器学习和深度学习工作的首选。本专题,在详细讲解机器学习常用的两类集成学习算法,Bagging和Boosting,对两类算法及其常用代表模型深入讲解的基础上,结合三个学习个例,并串讲一些机器学习常用技巧,将理论与实践结合。原创 2025-01-13 17:16:50 · 943 阅读 · 0 评论 -
GAMS安装和介绍、GAMS程序编写、GAMS程序调试、实际应用算例演示
优化分析是很多领域中都要面临的一个重要问题,求解优化问题的一般做法是:建立模型、编写算法、求解计算。各领域研究人员掌握GAMS这一强大优化工具的使用,更好地解决专业问题,内容包括典型优化模型和算法介绍、GAMS安装和介绍、GAMS程序编写、GAMS程序调试、实际应用算例演示与经验分享等五个章节,算例中除了一般案例展示还涵盖了基于GAMS的实际应用案例分析。三、数学优化方法(分支定界法、动态规划法、拉格朗日松弛法、内点法、奔得斯分解法等)一、典型优化模型(LP、NLP、MIP、MINLP、MIQCP等)原创 2024-12-31 11:34:33 · 620 阅读 · 0 评论 -
电力系统优化分析/系统机组组合/水电优化运行/鲁棒优化/多能源互补优化/分布鲁棒优化
掌握相关优化模型的建立和GAMS这一优化工具的使用,更好地解决专业问题。算例中涵盖了机组组合的一般模型和线性模型、常规鲁棒优化方法和近些年比较流行的分布鲁棒优化方法等,针对模型方法详细讲解并提供案例代码。适合电力领域从事优化研究的工作者,有助于研究人员高效处理各类优化问题。针对电力系统领域中比较典型的优化问题、优化方法及其在GAMS中的实现进行分析。共分为五个部分,包括电力系统机组组合专题、最优潮流专题、水电优化运行专题、鲁棒优化和多能源互补优化专题、分布鲁棒优化专题等,从基本模型到复杂模型逐步深入。原创 2024-12-31 11:03:22 · 594 阅读 · 0 评论 -
“智能科研写作:结合AI与ChatGPT提升SCI论文和基金申请质量“
科学研究的核心在于将复杂的思想和实验成果通过严谨的写作有效地传递给学术界和工业界。对于研究生、青年学者及科研人员,如何高效撰写和发表SCI论文,成为提升学术水平和科研成果的重要环节。本课程旨在帮助学员系统掌握从选题到投稿的全过程,提高论文撰写效率与质量,尤其是在当今AI技术迅速发展的背景下,如何利用现代AI工具辅助科研写作与投稿。 本课程将结合理论讲解与实际操作,深入探讨论文写作的核心技巧与技术要点,内容涵盖选题、文献调研、实验设计、数据分析、论文结构及语言规范等重要环节。学员将学会通过AI工具优原创 2024-10-22 11:39:46 · 718 阅读 · 1 评论 -
AI赋能R-Meta分析核心技术:从热点挖掘到高级模型、助力高效科研与论文发表
R语言拥有完整有效的数据处理、统计分析与保存机制,可以对数据直接进行分析和显示,命令格式简单、结果可读性强,包含众多针对Meta分析软件包,是进行Meta整合分析及评价的有效平台。是针对某一科研问题,根据明确的搜索策略、选择筛选文献标准、采用严格的评价方法,对来源不同的研究成果进行收集、合并及定量统计分析的方法,现已广泛应用于。1)Meta诊断分析(t2、I2、H2、R2、Q、QE、QM等统计量)专题四、如何利用AI+R语言Meta分析与回归分析、混合模型构建。专题五、AI+R语言Meta诊断分析进阶。原创 2024-10-16 11:13:39 · 1364 阅读 · 0 评论 -
“AI大语言模型+”助力大气科学相关交叉领域实践技术应用
GPT生成转化代码,将数据转化为WPS可读取的二进制格式。4.2模型堆叠:使用mlxtend库或自定义方法实现模型堆叠,结合不同模型的预测结果作为新的特征,训练一个新的模型。2.3交叉验证分割:采用交叉验证的方法来进行更可靠的模型评估,如K折交叉验证,保证每个样本被用于训练和验证。2.4时间序列分割:对于时间序列数据,使用时间顺序分割数据,确保训练集中的数据点时间上早于测试集中的数据点。1.2数据探索:通过统计摘要、可视化方法(如直方图、箱线图)来理解数据的分布、异常值情况和变量之间的关系。原创 2024-09-27 14:48:13 · 1706 阅读 · 0 评论 -
高效高质量SCI论文撰写技巧
旨在帮助学员系统掌握从选题到投稿的全过程,提高论文撰写效率与质量,尤其是在当今AI技术迅速发展的背景下,如何利用现代AI工具辅助科研写作与投稿。将结合理论讲解与实际操作,深入探讨论文写作的核心技巧与技术要点,内容涵盖选题、文献调研、实验设计、数据分析、论文结构及语言规范等重要环节。学员将学会通过AI工具优化写作过程,提升语言润色、排版及格式调整的效率,并能掌握SCI期刊的投稿流程及策略,显著提高投稿成功率。4) 工具:选择AI或者合适的软件和工具进行数据处理和分析,如SPSS、R、Python等。原创 2024-09-25 13:35:49 · 1445 阅读 · 0 评论 -
全流程Python编程、机器学习与深度学习实践技术应用
旨在帮助学员理解和掌握深度学习的基础知识,深入了解其与经典机器学习算法的区别与联系,并系统学习包括迁移学习、循环神经网络(RNN)、长短时记忆网络(LSTM)、时间卷积网络(TCN)、生成对抗网络(GAN)、YOLO目标检测算法、自编码器等前沿技术的原理及其PyTorch编程实现。6、值得研究的若干问题(隐含层神经元个数、学习率、初始权值和阈值等如何设置?变量选择与模型优化;4、张量(Tensor)的运算(加法、减法、矩阵乘法、哈达玛积(element wise)、除法、幂、开方、指数与对数、近似、裁剪)原创 2024-08-27 14:49:59 · 692 阅读 · 0 评论