[java练习]三、数字三角形

本文介绍如何利用动态规划解决一个关于数字三角形的问题,通过计算不同路径和的最大值,提供了一个Java代码示例。算法重点在于构建一个二维数组来跟踪每一步的最优路径选择。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题描述:

上图给出了一个数字三角形。从三角形的顶部到底部有很多条不同的路径。对于每条路径,把路径上面的数加起来可以得到一个和,你的任务就是找到最大的和。

路径上的每一步只能从一个数走到下一层和它最近的左边的那个数或者右 边的那个数。此外,向左下走的次数与向右下走的次数相差不能超过 1。


输入与输出:

输入描述

输入的第一行包含一个整数 N(1 ≤N ≤100)N (1≤N≤100),表示三角形的行数。

下面的 NN 行给出数字三角形。数字三角形上的数都是 0 至 100 之间的整数。

输出描述

输出一个整数,表示答案。


 

代码:

package com.exc.dayfour;
import java.util.Scanner;
public class ex1 {
    public static void main(String[] args)
    {
        Scanner scan = new Scanner(System.in);
        //在此输入您的代码...
        int N=scan.nextInt();
        int[][] arr=new int[N][N];
        for(int i=0;i<N;i++)
        {
            for (int j=0;j<=i;j++)
            {
                arr[i][j]=scan.nextInt();
            }
        }

        //创建一个二维数组存储输入数据数组相加规则的数据
        int flag[][]=new int[N][N];
        flag[0][0]=arr[0][0];
        for(int i=1;i<N;i++)
        {
            flag[i][0]=flag[i-1][0]+arr[i][0];
        }
        for(int i=1;i<N;i++)
        {
            for(int j=1;j<=i;j++)
            {
                flag[i][j]=arr[i][j]+Math.max(flag[i-1][j-1],flag[i-1][j]);
            }
        }
        if(N%2!=0) {
            System.out.println(flag[N-1][N/2]);
        }else {
            System.out.println(Math.max(flag[N-1][N/2], flag[N-1][N/2-1]));
        }
    }
}

运行结果:

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值