机器学习理论基础 | 极大似然估计

本文介绍了机器学习中的极大似然估计概念,通过实例解释如何利用极大似然估计反推模型参数。文章提到,极大似然估计是根据样本数据估计模型参数的一种方法,要求采样独立同分布。文中列举了两个例子,包括球颜色比例估计和全国年均收入分布的假设验证,帮助读者理解这一重要概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

视频教程:第03讲:概率论——对于事物不确定性的研究

 机器学习理论基础 | 最大似然函数_AI算法攻城狮的博客-CSDN博客_机器学习最大似然函数

极大似然估计,通俗理解来说,就是利用已知的样本结果信息,反推最具有可能(最大概率)导致这些样本结果出现的模型参数值!

换句话说,极大似然估计提供了一种给定观察数据来评估模型参数的方法,即:“模型已定,参数未知”。

可能有小伙伴就要说了,还是有点抽象呀。我们这样想,一当模型满足某个分布,

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI算法攻城狮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值