leetcode刷题--300. 最长递增子序列

本文介绍了一种求解最长严格递增子序列长度的方法,采用动态规划思想,并通过优化实现更高效的解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。

子序列是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。

输入:nums = [10,9,2,5,3,7,101,18]
输出:4
解释:最长递增子序列是 [2,3,7,101],因此长度为 4 

求解思路

动态规划思想。从前往后遍历,用bp Map保存当前最长子段的长度和当前最长子段的尾数(要记录当前的最小值)

eg:nums = [10,9,2,5,3,7,101,18]

       动态过程:

numsbp Map
10<1,10>
9<1,9>
2<1,2>
5<1,2><2,5>
3<1,2><2.3>
7<1,2><2,3><3,7>
101<1,2><2,3><3,7><4,101>
18<1,2><2,3><3,7><4,18>

代码

执行用时:73 ms, 在所有 Java 提交中击败了60.54%的用户

内存消耗:38.8 MB, 在所有 Java 提交中击败了5.32%的用户

class Solution {
    public int lengthOfLIS(int[] nums) {
        Map<Integer,Integer> bp = new HashMap<Integer,Integer>(); //key:当前最长子段的长度 value:当前最长子段的尾数(在所有可能中记录最小的)
        bp.put(1,nums[0]);    //初始化
        int len = nums.length;
        for(int i=1;i<len;i++){
            ListIterator<Map.Entry<Integer,Integer>> li = new ArrayList<Map.Entry<Integer,Integer>>(bp.entrySet()).listIterator(bp.size());   
            int flag = 0;
            while(li.hasPrevious()) {  //逆序遍历map,从最长的开始
                Map.Entry<Integer,Integer> entry = li.previous();  
                if(nums[i]>entry.getValue()){
                    if(flag==0){  //如果能加在最长的后面,直接增加长度
                        bp.put(entry.getKey()+1,nums[i]);
                        break;
                    }else if(bp.get(entry.getKey()+1)>nums[i]){//不能,但比当前最长的数值小,更新
                        bp.put(entry.getKey()+1,nums[i]);
                        break;
                    }
                }
                flag++;
            }
            if(flag==bp.size()&&(bp.get(1)>nums[i])){ //都不能,且比长度为1的子段的数值小,更新 
                bp.put(1,nums[i]);
            }
        }
        return bp.size();
    }
}

 看完评论区之后的代码(用数组代替Map,效率提升了不少)

执行用时:10 ms, 在所有 Java 提交中击败了78.06%的用户

内存消耗:38 MB, 在所有 Java 提交中击败了71.78%的用户

class Solution {
    public int lengthOfLIS(int[] nums) {
        int[] dp = new int[nums.length];
        dp[0] = nums[0];
        int maxl = 1;
        for(int i = 1;i<nums.length;i++){
           // int flag = 0;
            for(int j=maxl-1;j>=0;j--){
                if(nums[i]>dp[j]){
                    if(j==maxl-1){
                        dp[j+1] = nums[i];
                        maxl++;
                    }else if(dp[j+1]>nums[i]){
                        dp[j+1] = dp[j+1] = nums[i];
                    }
                }
                if((j==0)&&nums[i]<dp[j]){
                    dp[j] = nums[i];
                }
            }
        }
        return maxl;
    }}

更新!!!!

遍历到每个数时找这个数应该插入到哪里的过程变化:将原来的从后往前查找------>变为二分查找,时间复杂度降为了O(NlogN)   

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值