自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(11)
  • 收藏
  • 关注

原创 第三节下 回归实战

测试测试。

2025-05-19 14:04:22 200

原创 第三节上 回归实战

一个最简单的神经网络项目1.数据处理Data:一般输入是文件地址,或者数据内容, 输出是一个 存储了数据X,Y的数据结构。torch中一般用Dataloader 来装载。2.模型Model:定义自己的模型。输入X, 输出预测值3.超参(hyperPara)hyperPara:除模型外的超参 一般包含: 学习率,优化器(sgd,adam,admaW), 损失函数等不能改变,认为指定,例如模型框架训练集,验证集,测试集Dataset类吃一个文件地址,返回X, Yinit。

2025-05-11 12:17:24 130

原创 第0节,机器学习与深度学习

1.距离度量:KNN使用距离度量(通常是欧氏距离)来衡量数据点之间的相似性。KNN:K最近邻居(K-Nearest Neighbors,简称KNN)一种监督学习算法,用于分类和回归问题。它的基本思想是通过测量不同数据点。之间的距离来进行预测。● 一般是基于数学,或者统计学的方法,具有很强的可解释性。● 这里简述几个经典的传统机器学习算法。● KNN, 决策树,朴素贝叶斯。定义一个函数(Model)。分类和回归是结构化的基础。根据损失,对模型进行优化。定义一个合适的损失函数。向量 身高体重年龄。

2025-04-29 14:47:23 215

原创 第十节:看懂生成实战

单词掩码。与BERT模型类似,在输入文本中随机采样一部分单词,并替换为掩码标记(如[MASK);预训练的时候花样更多单词删除。随机采样一部分单词并删除。要处理这类噪声,模型不仅需要预测缺失的单词,还需要确定缺失单词的位置;句子排列变换。根据句号将输入文本分为多个句子,并将句子的顺序随机打乱。为了恢复句子的顺序,模型需要对整段输入文本的语义具备一定的理解能力;文档旋转变换。随机选择输入文本中的一个单词,并旋转文档,使其以该单词作为开始。为了重构原始文本,模型需要从扰乱文本中找到原始文本的开头;

2025-03-22 14:42:54 256

原创 第九节:文字生成

第四部分:生成任务,大模型

2025-03-21 21:35:44 195

原创 家电产品说明书知识图谱的构建与应用

构建家电产品说明书的知识图谱需要结合自然语言处理(NLP)和深度学习技术,从非结构化文本中提取结构化知识。通过以上方案,可构建一个支持智能问答、故障诊断的家电知识图谱。实际落地时需与产品数据库、客服系统对接,最终实现类似“海尔智慧家庭”的智能服务体系。故障码对应-解决方法。

2025-03-21 11:08:48 1019

原创 第十章 扩展知识与简历书写

之前的transformer都是应用于文字,有没有方法应用到图片上。图片不是token把图片离散化,把四万多像素(224*224)离散成token。

2025-03-21 08:57:22 730

原创 复试前沿问题

**自然语言处理(NLP)**:让机器理解、生成人类语言(如ChatGPT、翻译系统)。- **机器学习(ML)**:通过数据训练模型,使机器能自动改进性能(如分类、预测)。- **弱人工智能(Narrow AI)**:专注单一任务(如AlphaGo下围棋)。- **日常生活**:智能助手(Siri)、推荐系统(抖音、Netflix)。- **计算机视觉(CV)**:识别图像或视频内容(如人脸识别、自动驾驶)。- **强人工智能(AGI)**:具备人类水平的通用智能(尚未实现)。

2025-03-20 21:13:02 335

原创 第五章:分类实战

Adam和adamW比SGD更好用。

2025-03-20 21:11:41 193

原创 第八节 BERT实战

设输入长度为9 要经过一个分词器。

2025-03-20 20:46:31 237

原创 第七节 自然语言处理和BERT

在 RNN 的训练过程中,由于激活函数的导数在某些情况下可能小于 1 或大于 1,当多个时间步的导数相乘时,很容易导致梯度变得非常小(梯度消失)或非常大(梯度爆炸)。:RNN 在处理每个时间步时,都需要依赖前一个时间步的隐藏状态进行计算,这种顺序计算的方式使得 RNN 难以并行化,计算效率较低。LSTM 是一种特殊的神经网络,它像一个智能的记忆管家,能够巧妙地控制信息的进出,精准地记住长序列数据中的关键信息并遗忘无用信息。在大数据集上进行预训练,训练出好的特征提取器,在下游进行微调。

2025-03-20 11:25:36 347

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除