基于图的半监督学习与大数据
1. 引言
在当今的大数据时代,自动化和学习成为现代机器学习方法的基石。其核心思想是根据一系列“训练”点预测新数据点。在许多情况下,这些方法通过有效地强调训练点中的预测特征并忽略(或降低权重)数据中的噪声,从而适应预测问题。这一切都是实时在线完成的,因此需要自动化这种类型的学习过程。这种能力通常被视为一种学习范式,在统计学和计算机科学中有着深厚的根基。为了完成这项任务,必须具备(i)计算效率高的方法(例如,所有参数都可以从训练点快速估计)和(ii)理论上站得住脚的方法。
机器学习是提供数据驱动算法和模型以探索数据并进行预测以应用于实际应用的领域。机器学习方法在包括但不限于以下列出的几个实际应用中显示出前景:控制论与系统科学、言语识别、文本分类和神经科学。
2. 基础概念
2.1 半监督学习简介
半监督学习(SSL)介于监督学习和无监督学习之间,利用少量带标签的数据和大量未标记的数据来提高模型的性能。半监督学习的核心思想是,通过结合未标记数据,可以更好地捕捉数据的内在结构,从而提高模型的泛化能力。本章节将介绍基于图的半监督学习方法,这些方法适用于分类和回归问题,并且可以通过最近开发的锚图增强技术扩展到大数据问题。
2.2 基于图的半监督学习
基于图的半监督学习方法通过构建图来捕捉特征空间中的非线性结构,通常被称为流形。这些方法可以捕捉数据中的复杂关系,从而在分类和回归任务中表现出色。为了理解这些方法,首先需要了解图的构建和优化问题。
2.2.1 图的构建
图可以通过特征数据矩阵 (X) 构建,通常选择一种距离度量(如欧几