AI在痴呆症研究与医疗保健中的新兴作用
1. 实验医学
动物和细胞模型为更好地理解疾病假设和因果途径提供了重要的机制证据。这些结果可以催生新的药物靶点,并发现生物标志物,从而在临床前阶段识别与痴呆相关的疾病。以下是一些常见的痴呆症实验模型:
- 特定基因突变或敲入的小鼠
- 患者来源的诱导多能干细胞(iPSC)培养物
- 人类组织
- 复杂的多细胞和多物种模型,如人类大脑类器官、血脑屏障的多物种模型和含有活人类细胞的嵌合小鼠模型
智能实验医学是一个相对较新的领域,它包含了一些在痴呆症研究中使用人工智能进行创新的最有前景的机会。为了推动痴呆症实验医学领域的发展,需要解决以下三个关键问题:
|问题|详情|
| ---- | ---- |
|什么是好的实验模型?|需要可衡量的标准来确定实验模型的适用性和代表性,例如iPSC衍生的细胞培养物或类器官是否能代表老年神经退行性疾病过程的合适模型,以及是否可以在体外系统中实验性或计算性地模拟衰老特征。|
|如何充分利用多模态数据?|稳健的研究应控制实验因素和批次效应,开发能够跨模态的分析方法和工具,连接大脑活动与基因表达模式等可以为疾病生物学提供新见解。|
|如何将实验模型的见解转化为人类疾病生物学?|使用动物模型开发的药物临床试验通常不成功,需要强大的定量方法进行跨模型翻译,机器学习方法可用于跨物种翻译基因调控网络和对实验扰动的反应。|
2. 药物发现与试验优化
尽管国际上在开发治疗痴呆症的疾病修饰疗法方面做出了持续努力,但进展甚微。数百项试验中测试的大量实验药物中,只有一种疾病修饰疗法Aducanumab获得了美国食品药品监督管