一、求n的阶乘
1.问题分析:n的阶乘:1*2*3*4*...*n-1*n
2.求解思路:利用递归的思想,求n的阶乘就是求n与n-1的阶乘的乘积,求n-1的阶乘就是求n-1与n-2的阶乘的乘积......如此递归下去,直到n=0
3.n=1或者n=0时,返回1;n>1时,返回n*(n-1)
jiecheng.cpp
#include <iostream>
using namespace std;
long jiecheng(int n){
if(n==0||n==1)
return 1;
else
return n*jiecheng(n-1);
}
int main(){
cout<<"请输入整数:";
int val;
cin>>val;
cout<<val<<"的阶乘是"<<jiecheng(val)<<endl;
return 0;
}
二、Fibonacci数列
1.问题分析:类似于 0 1 1 2 3 5 8 13 21....这样的数列就是Fibonacci数列。在数学上,斐波拉契数列被用递归定义如下,f1=0,f2=1,fn=fn-1+fn-2.
2.当n=1时,返回0;当n=2时,返回1;当n>2时,返回Fibonacci(n-1)+Fibonacci(n-2)
fibonacci.cpp
#include <iostream>
using namespace std;
long Fibonacci(int n){
if(n==1)
return 0;
if(n==2)
return 1;
return Fibonacci(n-1)+Fibonacci(n-2);
}
int main(){
cout<<"打印20的Fibonacci数列"<<endl;
for(int i=1;i<=20;i++){
cout<<Fibonacci(i)<<" ";
}
cout<<endl;
}
测试结果:
三.十进制转二/八/十六进制
1.问题分析:十进制数N和其他d进制的转换是计算机实现计算的基本问题,其解决方法很多,其中一个简单的算法基于下列原理:N=(N div d)* d+ N mod d,其中div是整除运算,mod是取余运算。
例如:
N N div 8 N mod 8
1348 168 4
168 21 0
21 2 5
2 0 2
2.算法实现:将计算过程中的取余结果顺序入栈,直到整除结果是0,然后按栈序列打印输出即为与输入对应的d进制数。
transfer.cpp
#include <iostream>
#include <cstdlib>
using namespace std;
const int StackSize = 20;
template<class Type>
class SeqStack{
private:
Type data[StackSize]; //存放栈元素的数组
int top; //栈顶指针,为栈顶元素在数组中的下标
public:
SeqStack(); //构造函数,初始化一个空栈
~SeqStack(){} //析构函数,为空
void Push(Type x); //入栈操作
Type Pop(); //出栈操作
Type Gettop(); //获取栈顶元素
bool isEmpty(); //判断栈是否为空
};
template<class Type>
SeqStack<Type>::SeqStack(){
top = -1;
}
template<class Type>
void SeqStack<Type>::Push(Type x){
if (top == StackSize - 1)throw"上溢";
else{
data[++top] = x;
}
}
template<class Type>
Type SeqStack<Type>::Pop(){
if (top == -1)throw"下溢";
else{
Type x = data[top--];
return x;
}
}
template<class Type>
Type SeqStack<Type>::Gettop(){
if (top == -1)throw"下溢";
else{
return data[top];
}
}
template<class Type>
bool SeqStack<Type>::isEmpty(){
return top == -1 ? true : false;
}
template<class Type>
void transfer(SeqStack<Type>& ss, int n,int number){
while (number){
ss.Push(number%n);
number = number / n;
}
while (!ss.isEmpty()){
int tmp = ss.Pop();
if (tmp >= 9){
cout << (char) ('A' + tmp - 10);
}
else{
cout << tmp;
}
}
cout << endl;
}
void menu(){
cout << "————————————————菜单————————————————" << endl;
cout << " 1.十进制转二进制" << endl;
cout << " 2.十进制转八进制" << endl;
cout << " 3.十进制转十六进制" << endl;
cout << " 4.退出" << endl;
}
int main(){
SeqStack<int> ss;
int cmd;
int number;
do{
system("cls");
menu();
cout << "请选择:";
cin >> cmd;
switch (cmd){
case 1:
cout << "请输入一个整数:";
cin >> number;
transfer(ss, 2, number);
system("pause");
break;
case 2:
cout << "请输入一个整数:";
cin >> number;
transfer(ss, 8, number);
system("pause");
break;
case 3:
cout << "请输入一个整数:";
cin >> number;
transfer(ss, 16, number);
system("pause");
break;
case 4:
exit(1);
}
} while (1);
}
四、杨辉三角
1.问题分析:杨辉三角以正整数构成,数字左右对称,每行由1开始逐渐变大,然后变小回到1。第n行有n个数字。除了每行第一个与最后一个数字等于1外,其余每个数字等于它的左上方与右上方两个数字之和,即第n行第m个数字等于第n-1行第k-1个数字与第n-1行第m-1个数字之和。由此性质可以写出杨辉三角。
2.算法实现:m=1或者n==m时,返回1,其余的返回YHTriangle(n-1,m-1)+YHTriangle(n-1,m)
YHTriangle.cpp
#include <iostream>
using namespace std;
long YHTriangle(int n,int m){
//这里仅做基本算法的实现,不做输入数据的错误处理
if(m==1||n==m)
return 1;
else
return YHTriangle(n-1,m)+YHTriangle(n-1,m-1);
}
int main(){
for(int N=1;N<=10;N++){
for(int n=1;n<=10-N;n++)
cout<<" ";
for(int M=1;M<=N;M++){
cout<<YHTriangle(N,M)<<" ";
}
cout<<endl;
}
return 0;
}
测试结果: