递归(一)

算法与数据结构教程

一、求n的阶乘

1.问题分析:n的阶乘:1*2*3*4*...*n-1*n

2.求解思路:利用递归的思想,求n的阶乘就是求n与n-1的阶乘的乘积,求n-1的阶乘就是求n-1与n-2的阶乘的乘积......如此递归下去,直到n=0

3.n=1或者n=0时,返回1;n>1时,返回n*(n-1)


jiecheng.cpp

#include <iostream>
using namespace std;

long jiecheng(int n){
	if(n==0||n==1)
		return 1;
	else
		return n*jiecheng(n-1);
}

int main(){
	cout<<"请输入整数:";
	int val;
	cin>>val;
	cout<<val<<"的阶乘是"<<jiecheng(val)<<endl;
	return 0;
}


二、Fibonacci数列

1.问题分析:类似于 0 1 1 2 3 5 8 13 21....这样的数列就是Fibonacci数列。在数学上,斐波拉契数列被用递归定义如下,f1=0,f2=1,fn=fn-1+fn-2.

2.当n=1时,返回0;当n=2时,返回1;当n>2时,返回Fibonacci(n-1)+Fibonacci(n-2)

fibonacci.cpp

#include <iostream>
using namespace std;

long Fibonacci(int n){
	if(n==1)
		return 0;
	if(n==2)
		return 1;
	return Fibonacci(n-1)+Fibonacci(n-2);
}

int main(){
	cout<<"打印20的Fibonacci数列"<<endl;
	for(int i=1;i<=20;i++){
		cout<<Fibonacci(i)<<" ";
	}
	cout<<endl;
}

测试结果:



三.十进制转二/八/十六进制

1.问题分析:十进制数N和其他d进制的转换是计算机实现计算的基本问题,其解决方法很多,其中一个简单的算法基于下列原理:N=(N div d)* d+ N mod d,其中div是整除运算,mod是取余运算。

例如:

N                            N div 8                           N mod 8

1348                           168                                     4

168                               21                                     0

21                                   2                                     5

2                                     0                                     2

2.算法实现:将计算过程中的取余结果顺序入栈,直到整除结果是0,然后按栈序列打印输出即为与输入对应的d进制数。

transfer.cpp

#include <iostream>
#include <cstdlib>
using namespace std;

const int StackSize = 20;
template<class Type>
class SeqStack{
private:
	Type data[StackSize];						//存放栈元素的数组
	int top;							//栈顶指针,为栈顶元素在数组中的下标
public:
	SeqStack();							//构造函数,初始化一个空栈
	~SeqStack(){}							//析构函数,为空
	void Push(Type x);						//入栈操作
	Type Pop();							//出栈操作
	Type Gettop();							//获取栈顶元素
	bool isEmpty();							//判断栈是否为空
};

template<class Type>
SeqStack<Type>::SeqStack(){
	top = -1;
}

template<class Type>
void SeqStack<Type>::Push(Type x){
	if (top == StackSize - 1)throw"上溢";
	else{
		data[++top] = x;
	}
}

template<class Type>
Type SeqStack<Type>::Pop(){
	if (top == -1)throw"下溢";
	else{
		Type x = data[top--];
		return x;
	}
}

template<class Type>
Type SeqStack<Type>::Gettop(){
	if (top == -1)throw"下溢";
	else{
		return data[top];
	}
}

template<class Type>
bool SeqStack<Type>::isEmpty(){
	return top == -1 ? true : false;
}

template<class Type>
void transfer(SeqStack<Type>& ss, int n,int number){
		while (number){
				ss.Push(number%n);
				number = number / n;
		}
		while (!ss.isEmpty()){
			int tmp = ss.Pop();
			if (tmp >= 9){
				cout << (char) ('A' + tmp - 10);
			}
			else{
				cout << tmp;
			}
		}
		cout << endl;
}
void menu(){
	cout << "————————————————菜单————————————————" << endl;
	cout << "                                       1.十进制转二进制" << endl;
	cout << "                                       2.十进制转八进制" << endl;
	cout << "                                       3.十进制转十六进制" << endl;
	cout << "                                       4.退出" << endl;
}

int main(){
	SeqStack<int> ss;
	int cmd;
	int number;
	do{
		system("cls");
		menu();
		cout << "请选择:";
		cin >> cmd;
		switch (cmd){
		case 1:
			cout << "请输入一个整数:";
			cin >> number;
			transfer(ss, 2, number);
			system("pause");
			break;
		case 2:
			cout << "请输入一个整数:";
			cin >> number;
			transfer(ss, 8, number);
			system("pause");
			break;
		case 3:
			cout << "请输入一个整数:";
			cin >> number;
			transfer(ss, 16, number);
			system("pause");
			break;
		case 4:
			exit(1);
		}
	} while (1);
}

四、杨辉三角

1.问题分析:杨辉三角以正整数构成,数字左右对称,每行由1开始逐渐变大,然后变小回到1。第n行有n个数字。除了每行第一个与最后一个数字等于1外,其余每个数字等于它的左上方与右上方两个数字之和,即第n行第m个数字等于第n-1行第k-1个数字与第n-1行第m-1个数字之和。由此性质可以写出杨辉三角。

2.算法实现:m=1或者n==m时,返回1,其余的返回YHTriangle(n-1,m-1)+YHTriangle(n-1,m)

YHTriangle.cpp

#include <iostream>
using namespace std;

long YHTriangle(int n,int m){
	//这里仅做基本算法的实现,不做输入数据的错误处理
	if(m==1||n==m)
		return 1;
	else
		return YHTriangle(n-1,m)+YHTriangle(n-1,m-1);
}

int main(){
	for(int N=1;N<=10;N++){
		for(int n=1;n<=10-N;n++)
			cout<<" ";
		for(int M=1;M<=N;M++){
			cout<<YHTriangle(N,M)<<"  ";
		}
		cout<<endl;
	}
	return 0;
}


测试结果:




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值