棋盘覆盖(C语言)

本文介绍了如何使用C语言解决棋盘覆盖问题,通过分治法将大棋盘划分为小棋盘,利用L型骨牌进行递归覆盖,并提供了详细的算法描述和主函数实现。同时,文章探讨了时间复杂性的分析方法,运用Master定理对算法效率进行了讨论。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、棋盘覆盖-设计规则

       在一个2^k×2^k个方格组成的棋盘中,恰有一个方格与其他方格不 同,称该方格为“特殊方格”,且称该棋盘为“特殊棋盘”在棋盘覆盖问题中,要用图1所示的4种不同形态的L型骨牌覆盖给定的特殊棋盘上除特殊方格以外的所有方格且任何2个L型骨牌不得重叠覆盖

图1


二、棋盘覆盖-设计思路

       棋盘覆盖采用的是分治法,分而治之。当k>0时,将2^k×2^k棋盘分割为4个2^{k-1}×2^{k-1}子棋盘,例如图1中4×4的棋盘,将其分割成4个2×2的子棋盘,如2图所示。特殊方格必位于4个较小子棋盘之一中,其余3个子棋盘中无特殊方格。为了 将这3个无特殊方格的子棋盘转化为特殊棋盘,可以用一个L型骨牌覆盖这3 个较小棋盘的会合处,如图3所示,从而将原问题转化为4个较小规模的棋盘覆盖问题。递归地使用这种分割,直至棋盘简化为棋盘1×1

       

以下是一个基于分治法的棋盘覆盖算法的 C 代码: ```c #include <stdio.h> #include <stdlib.h> #define BOARD_SIZE 8 void chessboard_cover(int **board, int tr, int tc, int dr, int dc, int size, int label) { if (size == 1) { return; } int s = size / 2; int t = label++; // 左上角 if (dr < tr + s && dc < tc + s) { chessboard_cover(board, tr, tc, dr, dc, s, t); } else { board[tr + s - 1][tc + s - 1] = t; chessboard_cover(board, tr, tc, tr + s - 1, tc + s - 1, s, t); } // 右上角 if (dr < tr + s && dc >= tc + s) { chessboard_cover(board, tr, tc + s, dr, dc, s, t); } else { board[tr + s - 1][tc + s] = t; chessboard_cover(board, tr, tc + s, tr + s - 1, tc + s, s, t); } // 左下角 if (dr >= tr + s && dc < tc + s) { chessboard_cover(board, tr + s, tc, dr, dc, s, t); } else { board[tr + s][tc + s - 1] = t; chessboard_cover(board, tr + s, tc, tr + s, tc + s - 1, s, t); } // 右下角 if (dr >= tr + s && dc >= tc + s) { chessboard_cover(board, tr + s, tc + s, dr, dc, s, t); } else { board[tr + s][tc + s] = t; chessboard_cover(board, tr + s, tc + s, tr + s, tc + s, s, t); } } void print_board(int **board) { for (int i = 0; i < BOARD_SIZE; i++) { for (int j = 0; j < BOARD_SIZE; j++) { printf("%d\t", board[i][j]); } printf("\n"); } } int main() { int **board = (int **)malloc(sizeof(int *) * BOARD_SIZE); for (int i = 0; i < BOARD_SIZE; i++) { board[i] = (int *)malloc(sizeof(int) * BOARD_SIZE); for (int j = 0; j < BOARD_SIZE; j++) { board[i][j] = 0; } } int dr = 6, dc = 4; // 特殊方格的坐标 int label = 1; // 特殊方格的标签 chessboard_cover(board, 0, 0, dr, dc, BOARD_SIZE, label); print_board(board); for (int i = 0; i < BOARD_SIZE; i++) { free(board[i]); } free(board); return 0; } ``` 这个算法的时间复杂度是 $O(n^2)$,其中 $n$ 是棋盘的大小。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值