一文搞清楚:大语言模型如何“读懂”人类?从文本到响应的技术密码

你是否好奇,当我们向大语言模型抛出一个问题时,它是如何从一串文字中捕捉意图,最终给出贴合需求的回答?这背后藏着一整套精密的技术流程——从文本的拆分处理,到语义的数学转化,再到上下文关系的捕捉。其中,嵌入技术是核心枢纽:它将复杂的语言符号转化为机器能高效运算的数值向量,同时完整保留语义本质,让模型得以理解词语与概念间的关联,实现高级语言处理。

具体流程如下:

在这里插入图片描述

一、分词:把文本拆成模型“能认的字”

大语言模型处理信息的第一步,是将连续的文本“拆解”成它能理解的基本单元——“标记”(token)。这就像我们阅读时会把句子拆分成词语,模型也需要将输入文本转化为更小的、可处理的单元。

分解成tokens

在这里插入图片描述

以英语为例,一个标记通常对应约0.75个单词(或4个字符)。比如“hello”可能是一个标记,而“unhappiness”可能被拆成“un”“happiness”两个标记——这种拆分不是随意的,而是为了让每个单元都携带明确的语义信息。

对中文而言,分词则更具特殊性:由于中文没有空格分隔,模型需要先判断“词语边界”。比如“我爱自然语言处理”会被拆成“我”“爱”“自然语言”“处理”等标记,确保每个单元都能准确传递含义。

二、分词的“技巧”:不同模型的拆分逻辑

不同大语言模型采用的分词方法各有侧重,主流技术包括字节对编码(BPE)、WordPiece和SentencePiece,它们的核心目标都是让拆分出的标记更“有意义”。

  • 字节对编码(BPE):从单个字符开始,不断合并出现频率高的字符对,最终形成子词单元。比如“tokenization”会被拆成“token”“ization”,因为这两个子词在语料中频繁出现,且各自承载明确语义;
  • WordPiece:更注重子词的“通用性”,会优先拆分出能覆盖更多场景的子单元,常见于BERT等模型;
  • SentencePiece:不依赖预先分词,直接从原始文本中学习拆分规则,对多语言场景更友好。
    在这里插入图片描述
    这些方法的优势在于处理“生僻词”:当遇到未在训练集中出现的新词时,模型可将其拆分为已知的子词单元,避免“不认识”导致的处理错误。比如“chatbot”若未被收录,可能被拆成“chat”“bot”——两个已知子词的组合,让模型依然能理解其含义。

三、标记预算:别让文本“超出模型的内存”

大语言模型对输入文本的长度有明确限制(即“上下文长度”),从几千到128,000标记不等(如GPT-4的上下文长度可达128k标记)。这就像我们的“短期记忆”有容量限制,模型也需要在有限的标记预算内高效处理信息。
在这里插入图片描述

语言差异带来的“标记成本”

不同语言的“标记效率”大不相同:形态简单的语言(如中文)表达相同内容可能需要更少标记;而形态复杂的语言(如德语,常通过复合词表达复杂概念)可能需要更多标记。例如,“图书馆”在中文中是1个标记,在德语中“Bibliothek”是1个标记,但更复杂的“大学图书馆”在德语中是“Universitätsbibliothek”(1个标记),在中文中是2个标记——这种差异会影响模型对长文本的处理能力。

如何用好标记预算?

在这里插入图片描述

  • 按重要性排序:将关键信息放在前面,避免冗余内容占用空间;
  • 精简表达:用简洁语言传递核心意图,避免口语化的重复;
  • 提前预估:通过工具(如OpenAI的Tokenizer)计算文本的标记数,避免超出限制。

四、嵌入:给词语“分配数字坐标”

当文本被拆分成标记后,模型需要将这些离散的符号转化为可运算的数学形式——这就是嵌入(Embedding)的作用。它像给每个标记“分配”一组数字(向量),让语义关系转化为向量间的数学关系。
在这里插入图片描述
比如,“国王”和“王后”的向量可能非常接近(因为语义相关),而“国王”与“苹果”的向量则距离较远。更巧妙的是,“国王 - 男人 + 女人”的向量运算结果,可能恰好接近“王后”的向量——这种数学特性让模型能捕捉到词语间的逻辑关系。

嵌入向量的生成过程,本质是模型通过训练习得的“语义编码”:每个标记的向量都与训练数据中的上下文相关,比如“银行”在“河边的银行”和“金融银行”中会有不同的向量表示,以区分歧义。

这些向量还会结合“位置编码”,告诉模型每个标记在句子中的顺序(比如“我打他”和“他打我”的差异,就通过位置编码体现),最终形成同时包含语义和语序信息的数值表征。

五、Transformer与注意力:让模型“聚焦重点”

有了嵌入向量,模型还需要理解标记间的关联——这依赖于Transformer架构的核心:注意力机制。

想象你阅读“小明给小红送了一本书,她很喜欢”时,会自然知道“她”指的是“小红”;注意力机制就是让模型学会这种“聚焦”:通过计算每个标记与其他标记的“关联权重”,确定处理时的优先级。

具体来说,模型会为每个标记生成三个向量:

  • 查询向量(Query):代表“当前标记在找什么”;
  • 键向量(Key):代表“其他标记能提供什么信息”;
  • 值向量(Value):代表“其他标记的具体内容”。

通过计算查询与键的相似度,模型会得出注意力权重(比如“她”对“小红”的权重很高),再结合值向量,最终生成能体现上下文关联的输出。这种机制让模型能同时处理所有标记的关系,而非逐字逐句分析,极大提升了对长文本和复杂语义的理解能力。

六、总结:从技术原理到实用技巧

大语言模型的工作流程,是分词、嵌入、注意力机制等技术的精密协作:从文本拆分为标记,到标记转化为语义向量,再到向量间关联的计算,最终生成符合意图的响应。

理解这些原理,能帮我们更高效地使用大语言模型:

  • 优化标记使用:在上下文限制内,通过精简文本、突出重点,让模型更聚焦核心需求;
  • 设计合理提示:利用注意力机制的特性,将关键信息放在显著位置,减少歧义;
  • 应对多语言场景:根据不同语言的标记效率差异,调整输入长度,避免信息丢失。

从“看懂”文本到“生成”响应,大语言模型的每一步都离不开对语言本质的数学化解读——而这,正是人工智能理解人类的技术基石。

那么,如何系统的去学习大模型LLM?

作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。

所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。

由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
在这里插入图片描述

👉大模型学习指南+路线汇总👈

我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
在这里插入图片描述
在这里插入图片描述

👉①.基础篇👈

基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
在这里插入图片描述

👉②.进阶篇👈

接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
在这里插入图片描述

👉③.实战篇👈

实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
在这里插入图片描述

👉④.福利篇👈

最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
在这里插入图片描述
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值