不少刚接触大模型的朋友常常晕头转向,面对LLM、VLM、MLLM、推理大模型这些术语,总觉得眼熟却又说不透具体含义。今天就用通俗易懂的方式,把这些概念讲清楚~
一、大语言模型(LLM)
定义
大语言模型(Large Language Model,LLM)是在海量文本数据上训练的深度学习模型,核心能力是理解和生成自然语言。它通过大规模预训练,掌握语言的统计规律、语义关联和世界知识,能胜任各类语言任务。和传统NLP模型相比,LLM的“大”是关键——参数量通常达数十亿到数千亿,训练数据量以TB计,这让它具备了传统模型难以企及的泛化能力和上下文理解能力。
现代LLM有几个核心特征:大规模参数(如GPT-3的1750亿参数)、Transformer架构(基于自注意力机制)、“预训练+微调”模式(先在通用数据上预训练,再针对具体任务微调)、多任务适应性(一个模型能做翻译、写作等多种任务)。这些特征让LLM在金融(智能投顾)、医疗(病历分析)、教育(个性化辅导)等领域广泛应用。
LLM的核心能力可概括为“理解”与“生成”:理解能力能解析文本的含义、情感和意图;生成能力则能创造连贯的新文本,不仅包括普通文字,还能生成代码、表格甚至乐谱。其技术根基是Transformer架构的自注意力机制——让模型处理一个词时,能同时关注文本中所有其他词,按重要性分配权重,从而捕捉长距离语义关联。
主流架构
基础架构:Transformer
Transformer是LLM的技术核心,由Google于2017年提出,包含Encoder(编码器)和Decoder(解码器)两部分。Encoder处理输入序列,通过自注意力机制建立全序列上下文表征;Decoder生成输出时,会用交叉注意力层关注Encoder的结果。这种架构最初为机器翻译设计,解决了传统RNN难以捕捉长距离依赖的问题,且支持并行计算,能高效利用GPU训练。
自注意力机制是关键:每个词的嵌入会被映射成查询(Query)、键(Key)、值(Value)向量,通过计算相关性分数,对值向量加权求和得到新词向量,让模型能聚焦重要信息。
Encoder-only架构
仅保留Transformer的编码器,代表模型是谷歌BERT。它通过双向上下文建模(同时看词语左右的内容),适合文本理解任务。训练时用“掩码语言模型(MLM)”——随机掩盖部分词,让模型预测被掩盖的内容。
优势是深度理解文本,适合分类、问答等任务;但因无解码器,不适合文本生成。实际应用中,需加任务特定输出层完成下游任务。
Decoder-only架构
现代LLM的主流选择(如GPT、Llama系列),仅用Transformer解码器部分,但结构与编码器相似。核心是“自回归生成”:通过掩码自注意力,确保每个位置只关注前面的词,避免“偷看”未来信息。
优势是擅长文本生成,且通常共享编码和解码权重,简化设计、提高效率。虽叫“Decoder-only”,但核心模块与Encoder高度相似,体现了深度学习的模块化复用思路。
LLM的核心能力
- 文本生成与创作:能按提示生成连贯文本,如GPT-4生成技术文档,Claude 4的工程文档代码注释完整度比GPT-4.1高42%;在教育领域,还能根据学生水平生成个性化习题。
- 代码生成与辅助编程:成为开发者助手,Claude 4 Opus在SWE-bench测试中得分80.2%,能独立开发带碰撞检测的俄罗斯方块;Qwen2.5-Max在中文Spring Boot场景中,DAO层代码采纳率达82%。
- 知识问答与推理:回答事实问题并进行多步推理,Gemini 2.5 Pro凭借200万token上下文,适合实时数据分析;但需注意,即使GPT-4o在侦探案件分析等主动推理任务中,准确率仅35%,低于人类。
- 文本理解与转换:如摘要、翻译、情感分析,Llama 3.1 8B在德语医疗文本ICD-10编码任务中准确率达89.3%。
- 多模态处理:前沿模型(如Gemini 2.5 Pro)已支持文本、图像、视频的输入输出,拓展了应用场景。
值得注意的是,7-12B参数模型(如Llama 3.1 8B)在结构化信息提取中表现最佳(准确率90%),复杂推理则需更大模型或专门优化(如Claude 4的混合推理模式)。
代表性工作
GPT系列(OpenAI)
推动LLM发展的标杆,以通用能力强、持续创新为特点:
- GPT-3(2020):1750亿参数,首次展现强大少样本学习能力,确立“预训练+提示”范式。
- GPT-4(2023):多模态能力和复杂推理提升显著,架构细节未完全公开。
- GPT-4o(2024):优化响应速度和多模态能力,更贴近实时交互。
- GPT-5(2025年8月将发布):传将支持2000万token上下文,整合文本、代码、视频生成等功能,推理和工具整合能力大幅提升。
闭源但提供API,规模通常大于同期开源模型,基准测试长期领先,不过开源模型的差距正缩小。
Llama系列(Meta)
最具影响力的开源家族,推动开源生态发展:
- Llama 2(2023):首个可免费商用的开源大模型(70B参数),成为众多衍生模型的基础。
- Llama 3(2024):加入多模态能力,单语言和多语言任务表现提升。
- Llama 4(2025):首次采用MoE架构,分Scout(文档摘要、代码推理,1000万token上下文)、Maverick(多模态,支持视觉/语音)、Behemoth(超大规模,2万亿参数)三个版本。
创新点是“早期融合”多模态设计,能用未标记的文本、图像、视频联合预训练,视觉编码器在图/视频理解中领先。
Qwen系列(阿里巴巴)
中国开源代表,以全开源和多模态为特色:
- Qwen 1.5:0.5B到72B参数的基础模型系列。
- Qwen 2.5-Omni:端到端全模态模型,曾登顶Hugging Face总榜。
- Qwen 3:数学和代码能力显著提升。
截至2025年,阿里已开源200多款模型,Qwen衍生模型超10万,成全球最大开源模型族群,尤其擅长中文和多语言任务。
其他模型
- Claude 4:Anthropic旗舰模型,SWE-bench得分80.2%,支持7小时连续工作,适合复杂工程。
- Gemini 2.5 Pro:谷歌多模态模型,200万token上下文+250 TPS推理速度,适合实时分析。
- Kimi K2:月之暗面开源模型,MoE架构(1T总参数,32B激活参数),代码能力和Agent任务表现突出。
要理解视觉语言模型(VLM)和多模态大模型(MLLM),得先从视觉基础模型说起——它是大模型处理视觉输入的“桥梁”。
二、视觉基础模型
视觉基础模型是经大规模数据预训练,具备通用视觉理解或生成能力的深度学习模型。它的特点是:在数百万到数十亿图像或图文对上训练,学习广泛视觉特征;支持分类、检测等多种任务,无需从头训练;通过提示、微调能快速适配新场景。和传统视觉模型相比,它的“基础性”体现在既能直接用,也能当其他模型的底层支撑。
主流架构
1. 视觉Transformer(ViT)
从NLP领域引入视觉的架构,核心是将图像分块(Patch)转为序列,用自注意力建模全局关系:
- 关键技术:图像分块编码(16×16或32×32块转向量)、位置编码(加可学习嵌入保留空间信息)、多头注意力(并行捕捉局部与全局特征)。
- 代表模型:ViT(首个纯Transformer视觉模型)、DeiT(数据高效型)、Swin Transformer(用层次化窗口注意力,处理高分辨率图像更高效)。
2. CNN与Transformer混合架构
兼顾局部纹理与全局语义,如:
- ConvNeXt:用卷积模拟Transformer层级设计,高效建模长程关系。
- MobileViT:轻量级CNN中嵌入Transformer块,平衡计算成本与性能。
核心任务与应用
- 图像分类与识别:预测图像类别,ViT在ImageNet上准确率超传统CNN;CLIP通过对比学习实现零样本分类(无需训练数据)。
- 跨模态理解:关联图像与文本,CLIP对齐图文特征支持零样本检索;BLIP-2结合视觉编码器与LLM,实现视觉问答、描述生成。
- 目标检测与定位:识别物体位置并标注类别,GroundingDINO结合DINO检测模型与文本 grounding,能检测训练未见过的类别;GLIP将检测建模为图文匹配问题。
- 图像分割:按语义划分像素,MaskFormer统一语义与实例分割;SAM(Segment Anything Model)支持按点、框、文本提示分割任意对象,零样本迁移能力强。
- 图像生成与编辑:Stable Diffusion用潜在扩散模型在低维空间去噪,降低计算成本;ControlNet通过边缘图、深度图等控制生成过程。
三、语音大模型
语音大模型是经大规模语音数据预训练,能处理多种语音任务的大型神经网络。它从海量语音中学习统计规律、语义信息和发音特征,实现深度理解与生成。和传统专一任务语音模型不同,它参数量大(百亿到万亿级)、训练数据多,跨任务泛化能力强,无需大量微调就能有好表现。
主流架构
以Transformer为主,适合处理时序性强的语音数据,多采用“序列到序列”结构(编码器+解码器):
- 编码器将语音信号(如梅尔倒谱特征)转为特征序列,用多层Transformer提取上下文特征。
- 解码器结合编码器输出,生成文本或语音,通过自注意力和交叉注意力建模关联。
近年还融入混合专家(MoE)结构:多个专家网络处理不同特征,路由机制选最优输出整合,在保证性能的同时提高效率。例如AudioPALM将文本和音频token合并为多模态词汇表,用Transformer统一处理语音与文本任务。
适用任务
- 语音识别:将语音转文本,支持多语言、方言,抗噪声和口音能力强。
- 语音翻译:直接将一种语言的语音转另一种语言的文本,无需先转源语言。
- 语音到语音翻译:保留语气情感,将语音直接译为另一种语言的语音。
- 文本到语音合成:生成自然语音,可调整发音、语速、语调。
- 音频分析:识别特定声音(鸟鸣、汽车鸣笛)、分析音乐风格等。
- 语音增强与编辑:去噪声、分离目标声音、修复音频缺失部分。
- 语音情感识别:通过音调、语速等判断情绪,应用于客服质检。
代表性工作
- Whisper(OpenAI):多任务语音模型,支持99种语言的语音识别、翻译,在680k小时数据上训练。输入梅尔倒谱特征,用Transformer编码器-解码器结构,通过前缀token指定任务(如识别或翻译),嘈杂环境下表现稳定。
- AudioPALM(谷歌):文本语音大模型,合并文本和音频token为多模态词汇表,用decoder-only结构统一训练,支持语音识别、翻译、合成等任务,简化了传统异质模型的架构。
- Qwen2-Audio(阿里):扩展训练数据(含音频分析、语音聊天),用DPO优化对齐用户意图。支持语音聊天(直接语音交互)、多语言音频分析(中、英、粤语等8种)。
四、多模态大模型(MLLM)
多模态大模型能同时处理文本、图像、语音、视频等多种信息,实现跨模态交互与生成。若输入仅含图像和文本,通常称为视觉语言模型(VLM)。它通过融合不同模态特征,打破单一模态局限,用统一框架学习模态间关联,泛化能力和任务适应性更强,能在复杂场景中完成多样任务。
主流架构
核心是“预训练模态编码器 + 可训练模态连接器 + 大语言模型 + 模态解码器”:
- 预训练模态编码器:提取各模态特征,如图像用CLIP、SigLIP,语音用CLAP。
- 模态连接器:将不同模态特征转到同一语义空间,常用特征融合(如Flamingo插入交互模块)、可学习Query(如BLIP-2的Q-Former)、特征投影(如LLaVA的MLP)等方式。
- 大语言模型:处理文本指令和融合特征,负责推理生成,开源用Qwen、LLaMA,闭源用GPT-4o、Gemini。
- 模态解码器:将输出特征转为具体模态数据(如图像用Stable Diffusion,语音用TTS模型)。
适用任务
- 视觉问答:根据图像和问题生成答案(如“图中有几只猫”)。
- 图文生成:按文本描述生成图像,或为图像写详细说明。
- 跨模态检索:用文本检索图片,或用音乐检索相关视频。
- 视觉定位与分割:按文本指令标记图像中特定区域(如“圈出戴帽子的人”)。
- 多模态对话:结合图文语音多轮交互(如发美食图问做法,模型生成步骤和示意图)。
- 视频分析:识别场景、分析动作、生成字幕(如体育比赛实时解说)。
- 多模态内容审核:同时分析文本和图像是否违规。
代表性工作
- LLaVA:开源多模态模型,架构为“CLIP视觉编码器 + MLP连接器 + Vicuna语言模型”。分两阶段训练:先在595K图文数据上训练连接器,再用158K指令数据微调连接器和语言模型,擅长视觉对话和指令遵循。
- Qwen2.5-VL(阿里):主打细粒度理解和长上下文,用动态视觉编码支持图像动态分辨率和视频帧采样,通过空间临近视觉patch组合投影提升效率,在MMMU、MathVista等基准测试中领先。
- GPT-4o(OpenAI):闭源多模态模型,支持图文音视频的理解与生成,跨模态推理能力强(如图表计算、语音指令生成图像、视频动作预测),接近人类理解水平。
五、推理大模型
推理大模型聚焦大模型推理增强技术——通过优化提示、引入外部知识或改进推理流程,提升LLM和多模态模型在复杂任务中的推理能力、准确性和可控性。它不改动模型结构,而是靠外部策略或工具,激活模型的上下文学习、逻辑推理能力,弥补知识时效性、专业储备、问题拆解等不足,让模型更高效完成问答、决策等任务。主流大模型的推理能力常以“思维链”形式体现(逐步拆解问题)。
主流架构
核心是“基础模型 + 增强模块”,不改变原模型主干,通过外挂模块或策略优化推理:
- 基础模型:预训练的LLM(如GPT、LLaMA)或多模态模型(如LLaVA),负责语义理解和生成。
- 提示工程模块:设计或自动生成优质提示,引导模型输出(如手工提示、APE/OPRO自动优化)。
- 外部知识检索模块:含知识库(专业数据、实时信息)、检索器(向量数据库匹配)、重排序组件(筛选优质结果)。
- 推理链管理模块:拆解复杂问题,生成多步推理(如思维链CoT),支持零样本/少样本推理,部分带逻辑校验(自我反思、工具验证)。
这些模块通过轻量化接口与基础模型交互,形成“输入处理-知识检索-推理生成-结果优化”闭环,不增加参数量却能提升性能。
核心技术方向
- 提示工程:优化提示词激活模型能力,如用“逐步思考”引导问题分解,或提供少样本示例。自动提示优化(如OPRO)让模型自主生成最优提示,通过对比任务表现筛选最佳指令。
- 上下文学习:无需微调,靠输入示例让模型学新任务。零样本用任务描述引导;少样本加入输入-输出示例,帮助理解逻辑。多模态场景可通过交错图文示例,让模型学会跨模态任务。
- 思维链与慢思考:复杂任务中生成中间步骤,零样本用“Let’s think step by step”激活;少样本用示例展示推理过程。进阶技术如Tree-of-Thoughts(树形推理)探索多种路径;DeepSeek-R1通过强化学习激励更长推理链(“慢思考”),提升数学、代码任务准确率。
- 检索增强生成(RAG):解决知识过时或专业不足问题。流程:将外部知识(文档、数据库)转文本片段,用嵌入模型生成向量建索引;用户提问时,检索相关片段与问题结合输入模型,生成基于可靠知识的回答。多模态RAG还支持图像、音频检索(如图像转文本描述后检索)。
- 工具增强推理:让模型调用计算器、数据库等外部工具,提升复杂计算和实时数据处理能力(如金融分析中调用实时汇率计算跨境成本)。
代表性工作
- 自动提示优化(OPRO):通过“优化器模型”迭代改进提示,以任务表现为目标,对比不同提示效果(如文本分类中,按验证集准确率筛选最优提示)。
- 思维链(CoT):引导模型分步推理,少样本CoT加入带步骤的示例(如“3+5=?步骤1:3和5;步骤2:3+5=8;答案:8”);零样本CoT仅用“逐步思考”即可激活逻辑分解能力,适合数学、逻辑题。
- DeepSeek-R1:聚焦“慢思考”的推理增强模型,用GRPO强化学习激励更长、更严谨的推理链,训练中引入“思考过程占位符”分离推理与答案,以准确率和格式规范为奖励,在AIME竞赛、Codeforces等任务中接近OpenAI O1性能。
- RAG(如LangChain框架):将文本、PDF等建为向量数据库,用FAISS等检索器匹配相关知识。例如医疗问答中,检索专业文献片段输入模型,生成基于权威知识的诊断建议,解决模型医学知识不足问题。
那么,如何系统的去学习大模型LLM?
作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。
所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。
由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
👉大模型学习指南+路线汇总👈
我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
👉①.基础篇👈
基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
👉②.进阶篇👈
接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
👉③.实战篇👈
实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
👉④.福利篇👈
最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!