新手必看!一文看懂大语言模型LLM原理,看完少走99%弯路!

大模型浪潮正以前所未有的势头席卷全球,在科技领域掀起了一场“得模型者掌未来”的竞争热潮。对于IT行业而言,未来的技术形态或许会迎来重构——传统意义上的各类软件可能逐渐退居幕后,取而代之的是无数智能体(Agent)通过调用API实现复杂功能的全新生态。

1、大模型的核心架构

要理解大模型的原理,首先需要了解其核心架构。在上一篇文章的分类中提到,当前主流大模型基本都采用Transformer架构。这一架构可大致分为四个核心部分:

  • 输入层(Input):将原始输入(如文本、图像等)转化为计算机可处理的数值向量。由于计算机仅能对数字进行运算,这一步是“让机器看懂信息”的基础。
  • 编码器(Encoders):借助自注意力机制,捕捉输入内容中各词元(Token)之间的隐藏关联,并将这些关联信息以向量形式“记录”下来,形成对输入内容的深层表征。
  • 解码器(Decoders):通过循环迭代的方式预测下一个词元出现的概率——每一轮的预测结果会作为新的输入,参与下一轮预测,最终生成连贯的输出序列。
  • 输出层(Output):将解码器生成的向量结果反向转换为人类可理解的形式(如文本、图像描述等),最终输出矩阵形式的结果。

2、大模型的底层原理

基础数学概念:向量与矩阵

在深入讲解大模型原理前,有两个核心数学概念需要先明确:

  • 向量
    向量是由一组数字组成的有序序列,类似数组(但仅包含数字),例如[2, 5, 1, 3]。
    它的核心作用是通过“特征值”描述一个事物的属性。比如描述一只猫,我们可以用“体型(中等=2)、毛发长度(短=5)、叫声(喵喵=1)、物种(猫科=3)”来表征,对应的向量就是[2, 5, 1, 3]。
    同理,文本中的每个词元(如“苹果”“跑步”)也能通过向量表示——每个数字对应一个语言特征(如语义、词性、情感倾向等)。

  • 矩阵
    矩阵是由多个同维度向量组成的二维数组,本质上是“向量的集合”。例如,3个三维向量[1,2,3]、[4,5,6]、[7,8,9]可以组成一个3×3的矩阵。向量可以看作是“只有一行(或一列)的特殊矩阵”。

大模型的工作原理

结合Transformer架构的特点,大模型的工作流程可分为两个核心阶段:

(1)模型训练阶段
将海量标注数据输入Transformer系统,通过复杂的运算不断调整系统中的参数,最终生成一个包含海量参数的矩阵W——这就是“模型”本身。一个模型是否能被称为“大模型”,主要取决于其参数量(矩阵W的维度)和训练数据量:参数量越大、数据量越丰富,矩阵W的维度就越高,模型的“知识储备”和处理能力也越强。

(2)模型应用与进化阶段
当用户输入信息时,系统会先将信息转化为向量X;随后,向量X与模型矩阵W进行运算,得到输出向量Y;最后,Y被反向转换为人类可理解的内容(如文本回答)。值得注意的是,在实际应用中,模型会通过用户交互不断“进化”——本质上是矩阵W中的部分参数根据新数据进行微调,让模型更贴合具体场景的需求。

笔者梳理的大模型训练与应用原理示意图如下:

在这里插入图片描述

文本如何转化为向量?

上述原理中,“文本转向量”是关键步骤,具体过程可分为四步:

  1. 词元化(Tokenization):将输入文本拆分为最小语义单位(即词元Token),例如“我爱吃苹果”可拆分为“我”“爱”“吃”“苹果”四个Token。
  2. Token向量表示:为每个Token分配一个初始向量,这个向量包含该Token的基础语义信息(如通过预训练得到的词嵌入向量)。
  3. 位置向量生成:由于文本中词的顺序会影响语义(如“我打他”和“他打我”),需要为每个Token添加位置向量,以记录其在文本中的位置信息。
  4. 融合向量:将Token本身的向量与位置向量相加,得到包含语义和位置信息的“表征向量”。最终,一段文本会被转化为一个由多个表征向量组成的矩阵;而在模型推理时,会逐一对每个Token的向量进行运算。

文本向量化的示意图如下:

在这里插入图片描述

3、核心总结

  1. 输入大模型的所有数据,第一步都要完成词向量化转换——这是计算机通过数字运算实现“推理”的前提。
  2. 大模型的本质是一个超高维度的参数矩阵,其能力强弱与矩阵的维度(参数量)密切相关。
  3. 模型训练和微调的核心,都是通过数据迭代调整矩阵中的参数值,让模型更精准地捕捉数据中的规律。
  4. 大模型回答问题的过程,本质是“输入向量→与模型矩阵运算→生成最优输出向量→转换为人类可理解内容”的完整流程。

那么,如何系统的去学习大模型LLM?

作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。

所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。

由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
在这里插入图片描述

为什么要学习大模型?

我国在A大模型领域面临人才短缺,数量与质量均落后于发达国家。2023年,人才缺口已超百万,凸显培养不足。随着AI技术飞速发展,预计到2025年,这一缺口将急剧扩大至400万,严重制约我国AI产业的创新步伐。加强人才培养,优化教育体系,国际合作并进是破解困局、推动AI发展的关键。

在这里插入图片描述

在这里插入图片描述

👉大模型学习指南+路线汇总👈

我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
在这里插入图片描述
在这里插入图片描述

👉①.基础篇👈

基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
在这里插入图片描述

👉②.进阶篇👈

接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
在这里插入图片描述

👉③.实战篇👈

实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
在这里插入图片描述

👉④.福利篇👈

最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
在这里插入图片描述
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值