Agent框架LangGraph:实现一个简单的Plan-and-Execute Agent

在这里插入图片描述

写在前面

大型语言模型(LLM)作为 Agent 的“大脑”时,展现出了强大的潜力。然而,面对需要长远规划和多步骤推理的复杂任务,简单的“想到哪做到哪”(如典型的 ReAct 风格)的 Agent 往往会遇到困难。它们可能在中间步骤迷失方向,或者无法预见后续步骤的需求,导致任务失败或效率低下。

为了克服这一局限,Plan-and-Execute(规划与执行) 成为了一种备受关注的 Agent 设计模式。这种模式的核心思想是:先思考,再行动,边行动,边调整。 Agent 首先会根据用户目标制定一个多步骤的计划,然后逐一执行计划中的任务,并在执行过程中根据实际结果反思和修正后续计划。这种模式借鉴了人类解决复杂问题时常用的策略,也受到了 Plan-and-Solve 论文和 Baby-AGI 等项目的启发。

LangGraph 是 LangChain 生态中用于构建可循环、有状态、多 Agent 应用的强大库。它基于图(Graph)的思想,允许开发者定义 Agent 的状态、节点(处理单元)和边(状态转换逻辑),非常适合实现 Plan-and-Execute 这种包含规划、执行、反思循环的复杂 Agent 架构。

本篇博客将基于 LangChain 官方提供的 Plan-and-Execute 教程,深入剖析如何使用 Python 和

<think>我们正在构建一个智能代理系统(Agent System),需要涵盖开发步骤和技术选型。根据用户提供的引用,我们可以结合智能代理工作流、Agent开发框架选型以及实际项目(如智能停车场系统)的经验来设计步骤。 核心思路: 1. 明确系统目标:根据引用[1],智能代理工作流的目标是优化生产过程,通过实时数据和预测分析动态调整计划。 2. 技术选型:引用[2]提到Agent开发框架选型(如LangGraph, LlamaIndex Workflows等)是关键,同时引用[3]的智能停车场系统使用了Spring Boot, MyBatis, Vue.js,说明前后端分离的架构是可行的。 3. 开发步骤:从需求分析到部署,参考引用[3]中智能停车场系统的设计步骤。 因此,构建一个智能代理系统可以分为以下步骤: ### 1. 需求分析与系统设计 - **目标定义**:明确Agent系统的核心功能(如任务调度、决策优化、自动化执行等)。例如,在智能停车场系统中,目标是管理车辆进出、车位预订等[^3]。 - **工作流设计**:根据引用[1],设计智能代理工作流,包括状态感知、决策逻辑、动作执行等环节。使用流程图描述Agent的工作流程。 - **模块划分**:将系统拆分为多个模块,如: - 感知模块(收集数据) - 决策模块(基于规则或AI模型) - 执行模块(调用插件或工具) - 通信模块(多Agent协同) ### 2. 技术选型 - **Agent开发框架**:根据引用[2],选择成熟的框架- **LangGraph**:基于LangChain,适合构建复杂工作流和状态机。 - **LlamaIndex Workflows**:适合数据驱动的Agent,强调检索增强生成(RAG)。 - **Autogen**:微软开发,支持多Agent协作。 - 自定义开发:如果需要高度定制化,可用Python/Java等从头构建(如引用[3]中的Spring Boot)。 - **后端技术**:智能停车场系统使用Spring Boot(Java)和MyBatis[^3],也可选Python(FastAPI/Django)以快速集成AI库。 - **前端技术**:Vue.js(如引用[3])或React,用于构建管理界面和用户界面。 - **数据库**:根据数据特性选择: - 关系型:MySQL(如停车场系统[^3])、PostgreSQL - 非关系型:MongoDB(存储非结构化数据) - **AI模型**: - 基础模型:GPT-4、Claude、本地模型(如Llama 3) - 微调:根据需要微调模型以适应特定任务。 ### 3. 核心模块开发 - **感知模块**:接入数据源(如传感器、API)。代码示例(Python): ```python class Sensor: def read_data(self): # 从传感器或API获取实时数据 return data ``` - **决策模块**:实现智能决策逻辑,可采用规则引擎或AI模型。 - 规则引擎:Drools(Java)或Python的规则库。 - AI决策:使用LangGraph定义决策工作流[^2]: ```python from langgraph.graph import StateGraph, END # 定义状态 class AgentState: data: dict # 定义决策节点 def decide_next_action(state): if state.data["condition"] == "A": return "action_A" else: return "action_B" # 构建图 workflow = StateGraph(AgentState) workflow.add_node("decide", decide_next_action) workflow.add_edge("decide", END) # 简化示例 ``` - **执行模块**:调用插件或工具。参考之前关于插件调用准确性的优化方法(如强化学习、知识图谱)[^1]。 ```python class PluginExecutor: def __init__(self, plugin_registry): self.plugins = plugin_registry def execute(self, plugin_name, inputs): plugin = self.plugins[plugin_name] return plugin.run(inputs) ``` - **通信模块(多Agent)**:使用消息队列(如RabbitMQ)或gRPC实现Agent间通信。引用[2]强调多Agent协同的重要性。 ### 4. 系统集成与测试 - **集成**:将各模块组合成完整工作流。例如,感知→决策→执行形成闭环。 - **测试**: - 单元测试:每个模块单独测试。 - 集成测试:模拟整个工作流(如停车场车辆进出[^3])。 - 性能测试:评估系统响应时间和资源消耗。 ### 5. 部署与监控 - **部署**:使用Docker容器化,Kubernetes编排(云部署)或传统服务器。 - **监控**:Prometheus收集指标,ELK日志分析。 ### 6. 迭代优化 - 根据用户反馈和监控数据优化Agent决策逻辑(如强化学习在线训练)[^1]。 ### 示例:智能停车场Agent系统(基于引用[3]) - **目标**:管理停车场资源,优化车辆调度。 - **Agent设计**: - 入口Agent:识别车辆并分配车位。 - 调度Agent:根据实时车位数据动态调整分配策略(引用[1]的动态调整思想)。 - 支付Agent:处理费用计算。 - **技术栈**: - 后端:Spring Boot(Java) - 前端:Vue.js - Agent框架LangGraph(Python)通过gRPC与Java后端通信 - 数据库:MySQL 总结:构建智能代理系统需从需求出发,选择合适的框架和技术栈,分模块开发并注重集成测试。多Agent协同和插件调用优化是关键挑战[^1][^2]。 §§相关问题§§ 1. 如何设计一个高效的多Agent通信协议? 2. 在资源受限环境中如何部署Agent系统? 3. 智能代理系统如何保证数据隐私和安全?</think>### 如何构建智能代理系统:开发步骤与技术选型指南 #### 一、核心开发步骤 1. **需求分析与架构设计** - 明确系统目标(如生产优化[^1]、停车场管理[^3]) - 设计Agent工作流:感知→决策→执行→反馈闭环 - 模块划分: - 感知层:数据采集接口(传感器/API) - 决策层:规则引擎+AI模型 - 执行层:插件调用系统 - 协同层:多Agent通信机制 2. **Agent框架选型** | 框架类型 | 代表方案 | 适用场景 | |----------------|------------------------------|------------------------------| | 低代码平台 | LangGraph, LlamaIndex Workflows | 快速原型开发[^2] | | 全栈开发 | Spring Boot + Vue.js | 企业级系统(如停车场系统[^3])| | 专用框架 | Autogen, MetaGPT | 复杂多Agent协同 | 3. **核心模块开发** ```python # 示例:基于LangGraphAgent决策链 from langgraph.graph import StateGraph, END class AgentState: user_query: str plugin_selected: str = None def decide_plugin(state): # 基于LLM的插件选择逻辑 if "数据分析" in state.user_query: state.plugin_selected = "data_analyzer" return state workflow = StateGraph(AgentState) workflow.add_node("decision", decide_plugin) workflow.add_edge("decision", END) ``` 4. **插件系统集成** - 标准化插件接口(OpenAPI规范) - 实现插件注册中心: ```java // Spring Boot示例(参考停车场系统[^3]) @RestController public class PluginController { @PostMapping("/register") public ResponseEntity<String> registerPlugin(@RequestBody PluginMetadata metadata) { pluginRegistry.add(metadata); return ResponseEntity.ok("Registered"); } } ``` 5. **多Agent协同实现** ```mermaid graph LR A[调度Agent] -->|任务分配| B[执行Agent] A -->|状态监控| C[监控Agent] B -->|结果反馈| D[数据库] ``` 6. **测试与部署** - 单元测试:验证单Agent决策逻辑 - 集成测试:模拟完整工作流(如车辆进出流程[^3]) - 部署方案: - 容器化:Docker + Kubernetes - 云服务:AWS Lambda/Azure Functions #### 二、关键技术选型建议 1. **基础框架** - **生产系统**:Spring Boot(Java) + Vue.js(前端)[^3] - **AI密集型**:Python + LangChain/LlamaIndex[^2] - **高实时性**:Go + gRPC 2. **核心组件** | 组件 | 推荐方案 | 说明 | |---------------|-----------------------------------|-------------------------------| | 决策引擎 | LangGraph, Drools | 支持状态机和工作流管理[^2] | | 通信协议 | gRPC/WebSocket | 低延迟多Agent通信 | | 数据存储 | PostgreSQL(关系型)+ Redis(缓存) | 事务与实时数据分离[^3] | | AI模型 | GPT-4 + Fine-tuning | 复杂决策场景 | 3. **性能优化关键** - 插件调用加速:采用FPGA加速插件计算(参考交通信号优化[^3]) - 决策缓存:对重复查询使用Redis缓存结果 - 负载均衡:Nginx实现Agent集群分流 #### 三、典型应用场景实现 **智能停车场系统示例**(融合引用[^3]): 1. **感知层** - 车牌识别Agent:YOLO模型实时处理摄像头数据 - 传感器Agent:采集车位占用状态 2. **决策层** - 调度Agent:使用Q-learning算法优化车位分配 $$ Q(s,a) \leftarrow (1-\alpha)Q(s,a) + \alpha[r + \gamma \max_{a'}Q(s',a')] $$ 3. **执行层** - 支付插件:对接第三方支付API - 道闸控制插件:GPIO操作硬件 4. **协同机制** - 通过RabbitMQ实现Agent间消息队列 - 冲突解决:基于优先级的抢占式调度 #### 四、避坑指南 1. **插件兼容性问题** - 统一使用Protobuf定义接口 - 版本控制:语义化版本规范(SemVer) 2. **决策延迟优化** - 模型剪枝:减少LLM参数量 - 分层决策:简单规则→复杂模型分流处理 3. **安全防护** - 插件沙箱机制:Docker隔离运行 - 输入过滤:防止Prompt注入攻击 > **部署建议**:中小型系统可先用LangGraph快速验证(2周内上线MVP),再逐步迁移至Spring Boot微服务架构[^2][^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

kakaZhui

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值