小红书开源多模态视觉语言模型DOTS-VLM1

项目简介与模型基本介绍

DOTS-VLM1 是由小红书希实验室(Rednote HiLab)开源的多模态视觉语言模型(Vision-Language Model, VLM),旨在推动视觉与语言理解的融合研究。DOTS-VLM1 采用主流的编码-融合-解码架构,支持图片与文本的联合理解与生成,适用于图文问答、图片描述、视觉推理等多种场景。

主要特性:

  • 支持多模态输入(图片+文本),具备强大的视觉语言理解与生成能力
  • 兼容主流视觉编码器(如 ViT、ResNet)与语言模型(如 LLM、BERT)
  • 开源训练代码与模型权重,易于复现与二次开发
  • 支持多任务微调,适配多种下游应用

模型定位:

  • 视觉语言基础模型,面向开放领域的多模态理解与生成
  • 适合学术研究、工业应用、AI Agent、辅助工具等场景

模型能力与应用场景

1. 图文问答(Visual Question Answering, VQA)

  • 能力:输入图片和自然语言问题,输出准确答案
  • 应用:智能客服、辅助医疗、教育问答、内容审核等

示例代码:

from dotsvlm import VLM1

model = VLM1.load_pretrained("dotsvlm1-base")
image = load_image("cat.jpg")
question = "这只猫是什么颜色?"
answer = model.vqa(image, question)
print(answer)  # "灰色和白色"

2. 图片描述生成(Image Captioning)

  • 能力:输入图片,自动生成自然语言描述
  • 应用:无障碍辅助、内容检索、社交媒体、自动标注等

示例代码:

caption = model.caption(image)
print(caption)  # "一只灰白色的猫趴在沙发上"

3. 多模态推理与理解

  • 能力:支持图片与文本联合推理,如判断场景、推断关系、理解复杂指令
  • 应用:AI Agent、智能推荐、复杂任务自动化

示例代码:

instruction = "请描述图片中的动物,并判断它是否适合家庭饲养。"
response = model.infer(image, instruction)
print(response)

4. 图文检索与匹配

  • 能力:支持图片与文本的相互检索与匹配
  • 应用:内容搜索、推荐系统、相似图片查找

示例代码:

results = model.search("一只猫在沙发上")
for img in results:
    show(img
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

kakaZhui

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值