
30天零基础python数据分析_完结(习题见资源下载)
文章平均质量分 92
系统化、实战化地引导读者,从零基础快速掌握Python数据分析的核心技能,从python数据结构、基础语法到pandas数据分析,快速提升excel数据处理效率,挖掘数据价值,最终实现数据驱动的决策优化
kakaZhui
人工智能算法工程师,精通大模型算法以及RAG,Agent等
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
零基础上手Python数据分析 (24):Scikit-learn 机器学习初步 - 让数据预测未来!
在前面的学习中,我们已经掌握了使用 Python、Pandas、NumPy、Matplotlib 和 Seaborn 进行数据处理、分析和可视化的全套核心技能。我们学会了如何从数据中提取信息、清洗数据、整合数据、探索数据模式并将其可视化呈现。现在,我们站在了一个新的起点。数据分析不仅在于理解过去和现在,更在于利用数据预测未来、发现隐藏的规律、甚至让机器具备自主学习和决策的能力。这就是机器学习 (Machine Learning, ML)的魅力所在。机器学习:数据分析的延伸与升华机器学习。原创 2025-04-26 20:31:22 · 1122 阅读 · 0 评论 -
零基础上手Python数据分析 (23):NumPy 数值计算基础 - 数据分析的加速“引擎”
— 超越原生 Python 列表,解锁高性能数值计算,深入理解 Pandas 的底层依赖在前面一系列关于 Pandas 的学习中,我们已经领略了其在数据处理和分析方面的强大威力。我们学会了使用 DataFrame 和 Series 来高效地操作表格数据。但是,你是否好奇,Pandas 为何能够如此高效地处理大规模数据?其背后隐藏着怎样的 “秘密武器”?答案就是我们今天要深入学习的主角——。NumPy:Python 科学计算的基石NumPy是 Python 中用于科学计算的基础核心库。一个强大的。原创 2025-04-25 17:46:24 · 810 阅读 · 0 评论 -
零基础上手Python数据分析 (终章):[综合案例实战] 视频游戏销售分析 - 全流程演练,从数据到洞察
— 终极挑战!整合所学,完成你的数据分析代表作,用 Python 解读游戏市场经过前面二十多篇博客的系统学习和练习,你已经从 Python 的基础语法出发,一路披荆斩棘,掌握了 NumPy 的数值计算基础,精通了 Pandas 的数据处理与分析核心操作,并学会了使用 Matplotlib 和 Seaborn 将数据转化为富有洞察力的可视化图表。现在,是时候将所有这些“武功秘籍”融会贯通,像一名真正的数据分析师一样,独立完成一个从头到尾的数据分析项目了!本次实战目标:视频游戏销售数据分析。原创 2025-04-27 10:26:36 · 675 阅读 · 0 评论 -
零基础上手Python数据分析 (22)案例实战]之利用 Matplotlib & Seaborn 进行电商销售数据可视化分析
— 图表为刃,洞察先行!综合运用 Pandas、Matplotlib 与 Seaborn,点亮数据价值本篇通过一个完整的案例实战,体验如何将数据分析与数据可视化紧密结合,让冰冷的数据转化为生动、直观、富有洞察力的视觉故事!本篇博客将延续我们在第 17 篇案例中使用的模拟电商销售数据,利用 Matplotlib 和 Seaborn 对经过 Pandas 处理和分析的数据进行可视化呈现。可视化关键业务指标 (KPIs) 的变化趋势。直观比较不同类别(如产品、地区)的表现。探索变量之间的潜在关系。原创 2025-04-24 21:14:33 · 1261 阅读 · 0 评论 -
零基础上手Python数据分析 (21):图表选择困难症?常用可视化类型详解与应用场景指南
— 告别盲目绘图,理解图表语言,为你的数据找到最佳“代言人”在前面几篇博客中,我们已经学习了使用 Matplotlib 和 Seaborn 这两大 Python 可视化利器来绘制各种图表。我们掌握了创建折线图、柱状图、散点图、箱线图等常用图表的技术。然而,仅仅知道如何绘制图表是不够的,更重要的是知道何时使用哪种图表。图表选择的重要性:让数据说话,而非混淆视听选择错误图表无法清晰地展示你想表达的数据模式或洞察。不恰当的图表选择可能会扭曲数据,让观众产生错误的理解。原创 2025-04-22 19:52:39 · 901 阅读 · 0 评论 -
零基础上手Python数据分析 (20):Seaborn 统计数据可视化 - 轻松绘制精美统计图表!
— 告别 Matplotlib 繁琐定制,拥抱 Seaborn 便捷之美,让统计可视化更高效在前面两篇博客中,我们学习了 Python 数据可视化的基石 Matplotlib,掌握了绘制基础图表和进行高级定制的技巧。Matplotlib 功能强大且灵活,能够满足几乎所有的二维绘图需求。然而,对于统计数据可视化 (Statistical Data Visualization)这一特定领域,直接使用 Matplotlib 进行绘图,有时代码会显得有些繁琐,而且默认的样式可能不够美观。原创 2025-04-21 21:54:00 · 1068 阅读 · 0 评论 -
零基础上手Python数据分析 (19):Matplotlib 高级图表定制 - 精雕细琢,让你的图表脱颖而出!
— 超越默认样式,掌握 Matplotlib 精细控制,打造专业级可视化图表上一篇博客,我们学习了 Matplotlib 的基础绘图功能,掌握了如何绘制常见的折线图、柱状图、散点图和饼图,并进行了基本的图表元素定制,例如添加标题、标签、图例等。这些基础技能已经能让我们创建出信息清晰的图表。然而,要让图表更专业、更美观、更具表现力,能够更好地服务于数据故事的讲述和分析结果的呈现,我们就需要掌握更高级的图表定制技巧。为什么要进行高级图表定制?原创 2025-04-20 21:13:05 · 1130 阅读 · 0 评论 -
零基础上手Python数据分析 (18):Matplotlib 基础绘图 - 让数据“开口说话”
— 告别枯燥数字,拥抱可视化力量,掌握 Matplotlib 绘图基础欢迎来到 “高效数据分析实战指南:Python零基础入门” 专栏!经过前面 Pandas 模块的学习和实战演练,我们已经掌握了使用 Python 和 Pandas 进行数据处理、清洗、整合、分析的核心技能。我们能够从数据中提取信息、计算指标、发现规律。然而,仅仅得到一堆数字或表格,往往难以直观地理解数据、发现深层模式或有效地向他人传达我们的分析结果。数据可视化的力量:化繁为简,洞察本质。原创 2025-04-19 21:08:46 · 877 阅读 · 0 评论 -
零基础上手Python数据分析 (17):[案例实战] 电商销售数据分析 - 从数据到洞察的全流程演练
— 理论联系实践,综合运用Pandas技能,完成你的第一个数据分析项目经过前面一系列的学习,我们已经掌握了 Python 编程基础以及 Pandas 库的核心知识,包括数据结构 (Series, DataFrame)、数据读取与写入、索引与选取、数据清洗、合并连接、分组聚合、排序排名以及常用统计分析方法。理论学习固然重要,但将所学知识应用于实际问题才是检验学习成果、提升实战能力的关键。正所谓 “纸上得来终觉浅,绝知此事要躬行”。本篇博客将带你进入一个真实的(模拟)数据分析场景:电商销售数据分析。原创 2025-04-18 16:37:45 · 1226 阅读 · 0 评论 -
零基础上手Python数据分析 (16):DataFrame 常用统计分析方法
— 超越简单排序,探索数据内在规律,掌握Pandas统计分析基础上一篇博客,我们学习了如何使用 Pandas 对 DataFrame 进行排序和排名,这使得我们能够更好地组织数据并快速定位关键信息。然而,仅仅对数据进行排序和排名,还不足以完全理解数据。要想更深入地解读数据背后的故事,我们需要运用统计分析 (Statistical Analysis)的方法。统计分析:从数据到洞察的关键桥梁统计分析是一系列用于收集、整理、分析、解释和呈现数据的方法。了解数据的 “中心” 在哪里,例如平均值、中位数。原创 2025-04-17 18:30:47 · 996 阅读 · 0 评论 -
零基础上手Python数据分析 (15):DataFrame 数据排序与排名 - 快速定位关键数据
在上一篇文章中,我们学习了如何使用 Pandas 对 DataFrame 进行分组(groupby())和聚合(agg()apply()),这使我们能够从不同维度对数据进行汇总和分析。然而,仅仅得到聚合结果往往不够,我们经常需要知道 “谁是第一?”,“哪些数据排在前面/后面?”,“数据按照某个标准应该如何排列?” 这就是数据排序和排名的用武之地。在数据分析中,排序和排名是极其常用的操作。找到最大值、最小值、Top N、Bottom N 等关键数据点。按照特定顺序排列数据,方便观察趋势或进行后续处理。原创 2025-04-16 22:02:50 · 778 阅读 · 0 评论 -
零基础上手Python数据分析 (14):DataFrame 数据分组与聚合 - 玩转数据透视,从明细到洞察
— 像搭积木一样分析数据,掌握Pandas GroupBy,轻松实现分组统计与聚合回顾一下,上篇博客我们学习了如何使用 Pandas 合并与连接多个 DataFrame,将分散的数据整合到一起。现在,我们拥有了更完整、更丰富的数据视图。接下来,一个非常常见的分析需求就是对数据进行分组,并对每个分组进行统计计算或聚合分析,从而从更细致的维度挖掘数据价值。数据分组与聚合:从明细数据中提炼洞察想象一下,你手中有一份详细的销售订单数据,包含了每笔订单的日期、地区、商品类别、销售额等信息。原创 2025-04-13 20:49:12 · 725 阅读 · 0 评论 -
零基础上手Python数据分析 (13):DataFrame 数据合并与连接 - 整合多源数据,构建完整分析视图
— 告别 VLOOKUP 烦恼,掌握 Pandas 合并连接利器,轻松整合分散数据在前面的博客中,我们学习了如何读取数据、清洗数据、选取数据。现在,我们已经能够处理单个 DataFrame 中的数据了。然而,在实际的数据分析项目中,数据往往不是存储在一个单独的文件或表格中,而是分散在多个不同的数据源中。数据整合的挑战:打通数据孤岛包含订单编号、订单日期、客户ID、商品ID、订单金额等。包含客户ID、客户姓名、客户城市、注册日期等。包含商品ID、商品名称、商品类别、商品单价等。原创 2025-04-12 15:12:15 · 897 阅读 · 0 评论 -
零基础上手Python数据分析 (12):DataFrame 数据清洗与预处理 (下) - 类型转换、格式化、文本与日期处理
上一篇博客,我们学习了如何使用 Pandas 处理数据分析中最常见的 “脏数据”:缺失值、重复值和异常值。这为我们处理数据质量问题打下了坚实的基础。然而,数据清洗的挑战远不止于此。在实际数据中,我们还会经常遇到数据类型不一致数据格式不规范文本数据混乱日期时间数据处理复杂等问题。数据规范性的重要性:分析结果的基石想象一下,你正在分析一份销售数据,其中 “销售额” 列的数据类型有时是数字,有时是包含货币符号的文本 (例如 “¥1,200.00”);原创 2025-04-12 15:09:59 · 747 阅读 · 0 评论 -
零基础上手Python数据分析 (11):DataFrame 数据清洗与预处理 (上) - 搞定缺失值、重复值和异常值
上一篇博客,我们学习了如何灵活地索引和选取 DataFrame 中的数据,这为我们深入操作数据打下了基础。数据清洗与预处理 (Data Cleaning and Preprocessing)。“脏数据”:数据分析路上的拦路虎现实世界中的数据很少是完美无缺的,它们常常充满各种问题,也就是我们常说的“脏数据”数据表中存在空白单元格、N/ANULL等表示数据缺失的情况。例如,用户注册时未填写年龄、传感器数据采集失败等。数据表中存在完全相同或部分字段相同的重复记录。原创 2025-04-12 15:07:16 · 816 阅读 · 0 评论 -
零基础上手Python数据分析 (10):DataFrame 数据索引与选取
回顾一下,上篇博客我们学习了 Pandas DataFrame 的数据读取与写入,掌握了数据导入导出的基本技能。现在,我们已经能够将数据加载到 DataFrame 中了。接下来,我们需要学习如何灵活高效地访问和操作 DataFrame 中的数据,才能真正发挥 Pandas 的强大威力。DataFrame 数据操作的核心:索引与选取DataFrame 是一个二维表格数据结构,要对 DataFrame 中的数据进行分析和处理,首先需要能够精准地定位到想要操作的数据。原创 2025-03-30 22:10:01 · 830 阅读 · 0 评论 -
零基础上手Python数据分析 (9):DataFrame 数据读取与写入 - 让数据自由穿梭
回顾一下,上篇博客我们学习了 Pandas 的核心数据结构 Series 和 DataFrame。DataFrame 作为 Pandas 的 “王牌” 数据结构,是进行数据分析的基石。但 DataFrame 的强大功能,还需要建立在和的基础上。数据从哪里来?分析结果又如何保存?就是解决这些问题的关键环节。在实际数据分析工作中,数据通常存储在各种我们需要将这些,才能利用 Pandas 强大的数据分析功能进行后续处理和分析。同样,数据分析的结果也需要,以便生成报告、共享数据或进行持久化存储。原创 2025-03-25 20:23:42 · 820 阅读 · 0 评论 -
零基础上手Python数据分析 (8):Pandas 核心数据结构 Series 和 DataFrame
我们已经完成了 Python 编程基础的入门,掌握了 Python 语法、数据类型、数据结构、文件操作和异常处理等核心知识。从今天开始,我们将正式踏入,学习库!是 Python 数据分析领域的库,没有之一!它提供了高性能、易于使用的数据结构和数据分析工具,使得 Python 成为数据分析的强大武器。Pandas 的地位,就如同 Excel 在电子表格软件中的地位,但 Pandas 的功能远比 Excel 强大和灵活。Pandas 最核心的数据结构就是和。原创 2025-03-23 16:21:52 · 907 阅读 · 0 评论 -
零基础上手Python数据分析 (7):Python 面向对象编程初步
python中的类、对象傻傻分不清,一遍文章带你了解并入门原创 2025-03-21 23:28:21 · 1166 阅读 · 0 评论 -
零基础上手Python数据分析 (6):Python 异常处理,告别程序崩溃的烦恼!
异常 (Exception)是指在程序运行期间发生的非正常情况或意外事件,例如文件找不到、网络连接失败、数据类型错误、除数为零等。当 Python 解释器遇到异常时,会中断当前的程序执行流程,并抛出一个异常对象,表示发生了某种错误。不进行异常处理的后果:程序崩溃如果不进行异常处理,当程序抛出异常时,程序会立即终止运行,并打印错误堆栈信息 (Traceback)到控制台。错误堆栈信息会详细显示错误类型、错误发生的行数、函数调用链等信息,帮助开发者定位错误原因。但对于用户来说,看到错误堆栈信息往往是不友好的。原创 2025-03-19 22:41:35 · 961 阅读 · 0 评论 -
零基础上手Python数据分析 (5):Python文件操作 - 轻松读写,数据导入导出不再是难题
回顾一下,前几篇博客我们学习了 Python 的基本语法、数据类型和常用数据结构。现在,我们已经具备了 Python 编程的基础能力,可以开始学习如何与外部世界进行数据交互了。而文件操作,就是数据交互的重要桥梁。在数据分析工作中,数据通常不会直接在程序中生成,而是存储在各种文件中,例如 CSV 文件、文本文件、Excel 文件、数据库文件等。我们需要从文件中读取数据,才能进行后续的分析和处理。同样,分析的结果也需要保存到文件中,以便生成报告、共享数据或进行持久化存储。原创 2025-03-15 23:05:37 · 1281 阅读 · 0 评论 -
零基础上手Python数据分析 (4):Python数据结构精讲 - 列表、元组、字典、集合
回顾一下,在之前的博客中,我们学习了 Python 的基本数据类型(数值、字符串、布尔值)和核心语法(运算符、变量、流程控制、函数、模块)。现在,我们已经掌握了 Python 编程的基础知识。接下来,我们将进入数据分析的关键环节:数据组织。在数据分析中,数据往往不是孤立存在的,而是以结构化的方式组织起来的。例如,一份销售数据报表,包含多个字段(日期、商品名称、销售额、地区等),这些字段之间相互关联,共同描述了销售情况。高效地组织和管理这些数据,对于后续的数据分析至关重要。原创 2025-03-15 22:57:07 · 949 阅读 · 0 评论 -
零基础上手Python数据分析 (3):Python核心语法快速入门 (下) - 程序流程控制、函数与模块
还记得上周我们学习的 Python 基本数据类型、运算符和变量吗?掌握了这些基础知识,我们已经能够进行一些简单的数据操作了。但是,在实际的数据分析工作中,仅仅掌握基本语法是远远不够的。我们需要让程序能够根据条件做出判断重复执行某些操作组织和复用代码,才能处理更复杂的数据分析任务。再看一个典型的数据分析工作场景:场景:客户分群分析你需要根据客户的消费数据(消费金额、消费频次、最后一次消费时间等)将客户划分为不同的群体,例如“高价值客户”、“潜力客户”、“流失风险客户”等,以便制定针对性的营销策略。原创 2025-03-15 22:35:33 · 1059 阅读 · 0 评论 -
零基础上手Python数据分析 (2):Python核心语法快速入门
场景:每周销售数据报表整理你需要每周从多个Excel文件中汇总销售数据,计算各项指标(销售额、订单量、客单价等),并生成周报。Excel操作痛点:文件太多,手动打开复制粘贴,效率低下,容易出错。多个Excel文件,每个都要打开、筛选、复制数据,重复劳动,耗时费力。公式复杂,容易出错,维护困难。为了计算各种指标,Excel公式写得又长又复杂,一旦数据格式变动,公式就容易出错,排查和维护非常麻烦。数据量稍大,Excel卡顿,操作缓慢。原创 2025-03-15 22:30:37 · 906 阅读 · 0 评论 -
零基础上手Python数据分析 (1):Windows环境配置与开发工具,开启数据科学之旅!
在数据科学领域,Python 已经成为事实上的标准语言,这并非偶然。总而言之,Python 凭借其易用性、强大的功能和活跃的社区,成为了数据分析的最佳选择之一。选择 Python,你将站在巨人的肩膀上,更高效地进行数据分析工作。原创 2025-03-09 22:16:07 · 675 阅读 · 0 评论 -
高效数据分析实战指南:Python零基础入门
大家好,我是kakaZhui,从事数据、人工智能算法多年,精通Python数据分析、挖掘以及各种深度学习算法。一直以来,我都发现身边有很多在传统行业从事数据相关工作的朋友,都不同程度受到数据处理效率、数据分析技能不够用的问题的困扰,所以很早之前我就希望出一个实战课程希望对这些朋友的工作效率提升有所裨益。各行业从业者,无论其专业背景,均日益面临数据处理、分析与解读的需求。传统工具如Excel,在面对海量、复杂数据时,效率瓶颈日益凸显。掌握高效的数据分析工具和方法,已成为提升个人及组织竞争力的关键要素。原创 2025-03-09 22:03:16 · 1496 阅读 · 0 评论