
面试
文章平均质量分 68
KazeHelloWorld
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
面经-机器学习
机器学习ROC 曲线 & AUCGMM 高斯混合模型xgboostEM算法 ROC 曲线 & AUC 横坐标为假正,纵坐标为真正 越接近1越好,(0,0)表示都预测成负,(1,1)表示都预测成正 而FPR(False Positive Rate)= FP /(FP + TN),即负类数据被分为正类的比例 TPR(True Positive Rate)= TP /(TP + FN),即正类数据被分为正类的比例 AUC(Area Under Curve)被定义为ROC曲线下与坐标轴围成的面积,原创 2021-08-19 19:35:07 · 203 阅读 · 0 评论 -
面经汇总-1-模型
面经汇总bert & transformer bert & transformer BERT Transformer transformer或bert的实现方法 transformer的attention实现 bert的两个上游任务如何实现 Masked LM: mask 15% 80% [MASK],10% random,10% unchange Next Sentence Prediction (NSP) [CLS] to predict 50% isNext,5原创 2021-08-15 15:41:14 · 190 阅读 · 0 评论 -
面试题-2
面试题2L1, L2 正则的区别,L1为什么会造成稀疏描述一下 max_pool和avg_pool 正向反向传播介绍一下 self-attention 机制描述一下 Transformer 结构boost 和 baggingBagging和Boosting的区别:随机森林闭包还有迭代器模型参数GPU并行 参考链接 L1, L2 正则的区别,L1为什么会造成稀疏 L2正则: 我们发现,权重w每次乘上的是小于1的倍数进行收敛,而且其导数在w = 0 时没有办法做到左右两边导数异号,所以L2正则使得整个训练原创 2021-08-11 17:06:12 · 307 阅读 · 0 评论 -
栈模拟遍历二叉树前、中、后序
栈模拟遍历二叉树前、中、后序 先序遍历 def preorderTraversal(self, node, k): # write code here stack = [] res = [] while node or stack: while node: stack.append(node) res.append(node.val) node = node.left原创 2021-06-25 21:49:57 · 196 阅读 · 0 评论 -
字节笔试4,25
字节笔试 第三题 n 行数据: 该需求所需天数di, 延期该需求需要请ci杯奶茶 3 4 1 100 2 2 5 5 要求输出最少奶茶顺序: 2 1 3 4 import functools class Node: def __init__(self,index,day,cost): self.i = index self.d = day self.c = cost def cmpare(x, y): if x.d * y.c > x.c原创 2021-04-26 12:26:16 · 195 阅读 · 0 评论 -
面试题
1.python交换数字a,b python交换两个值得方法非常简单,即a,b=b,a Python的变量并不直接存储值,而只是引用一个内存地址,交换变量时,只是交换了引用的地址。 2.python对一个列表删除所有为0的数字 def repr_int(s): try: int(s) return True except ValueError: return False original_list = [u'123', u'hello',原创 2021-01-10 15:53:12 · 167 阅读 · 0 评论