P2P数据集成的内涵语义解读
在P2P数据集成领域,我们面临着数据来源多样、信息不一致等挑战。为了有效处理这些问题,需要一种合适的语义方法。本文将深入探讨P2P数据集成的内涵语义,包括内涵逻辑、抽象对象类型以及P2P网络的定义等内容。
1. 动机与计划
在P2P数据集成中,用户直接询问的对等节点给出的确定答案,与从其他对等节点获得的“可能”答案存在差异。我们不会消除来自不同对等节点的任何信息,而是由接收所有答案的用户采取适当行动,验证他认为相互矛盾的那部分信息。
“弱”方法在处理相互矛盾的P2P信息时,其复杂度低于“强”语义映射的一阶多模态逻辑。我们采用弱耦合语义进行P2P映射,主要动机在于实现对等数据库的完全认知独立性。各对等节点之间不存在强制的本地知识转移,仅为回答用户查询而进行协作。它们可以独立于其他对等节点更改本体和/或知识扩展,无需与其他节点进行通信。这样可以构建非常健壮的P2P系统,即使对等节点之间的预期映射与修改后的本体不匹配,也能回答用户查询,还能自然地将P2P数据库系统映射到贪婪计算中。
具体计划如下:
- 引入内涵逻辑和内涵等价,用于定义不同对等节点上内涵等价的视图。
- 将独立的对等数据库形式化为抽象数据类型(ADT),封装数据集成系统的语义。
- 定义具有内涵映射语义的P2P系统的查询回答语义,区分被询问对等节点的确定答案和其他对等节点的可能答案。
2. 内涵等价
塔斯基对形式语言语义的阐述、克里普克的可能世界语义以及蒙塔古的内涵逻辑语义,为严格分析自然语言提供了强大工具。蒙塔古的研究表明,自然语言和逻辑形式语言之间没有重要的理论差异。
由于“