自动驾驶中LiDAR的角色与发展
1. 自动驾驶概述
自动驾驶对多数人而言并不陌生,在许多科幻电影中都有出现。近年来,它备受关注,正步入预工业化阶段,取得了显著进展。众多知名高科技公司、传统汽车制造商和电动汽车制造商都在这一领域投入了大量精力,相关初创企业也深受风险投资青睐。
自动驾驶通常指能够感知周围环境、通过计算机进行控制和规划,且很少或完全不需要人类驾驶员干预的车辆。需要注意的是,“自主”(autonomous)与“自动”(automated)有所不同。自动车辆(如地铁)按预设程序行驶,而自主车辆需要感知、响应和决策道路上的意外情况,具备在不确定环境中良好运行以及在系统故障时自我补偿的能力。
为了感知周围环境,自动驾驶汽车会结合多种车载传感器,如RGB相机、红外相机、雷达、LiDAR、超声波雷达、GPS、里程计和惯性测量单元(IMU)。这些传感器收集的信息会在车载计算机中通过先进算法和人工智能神经网络进行融合处理,以识别障碍物和交通标志、规划导航路径,最终由控制系统做出正确响应。不同传感器的功能如下:
- 雷达 :监测周围车辆的位置。
- RGB相机 :识别交通灯、道路标志、车辆和行人。
- LiDAR :通过发射光脉冲测量与周围物体的距离,检测道路边缘和车道标记。
- 超声波传感器 :在停车时检测附近的障碍物和其他车辆。
美国汽车工程师协会(SAE)制定了一个六级自动驾驶分类系统,从0级(完全手动)到5级(完全自主):
| 级别 | 描述 | 示例 |