【LeetCode】128. 最长连续序列

文章介绍了如何在给定的未排序整数数组中找到最长的数字连续序列的长度,提出了三种方法:先排序后遍历判断,使用哈希表和使用HashSet。其中,哈希表的方法能在O(n)的时间复杂度内解决问题,而HashSet的方法虽然有效但时间复杂度不符合要求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.问题

给定一个未排序的整数数组 nums ,找出数字连续的最长序列(不要求序列元素在原数组中连续)的长度。

请你设计并实现时间复杂度为 O(n) 的算法解决此问题。

示例 1

输入:nums = [100,4,200,1,3,2]
输出:4
解释:最长数字连续序列是 [1, 2, 3, 4]。它的长度为 4。

示例 2

输入:nums = [0,3,7,2,5,8,4,6,0,1]
输出:9

提示

  • 0 <= nums.length <= 105
  • -109 <= nums[i] <= 109

2.解题思路

2.1 先排序后遍历再判断

先对数组进行升序排列,则若存在连续序列,当遍历到某一值时,其前后之差应该为1,则进行最长序列长度统计;若不为1,如果相等,则跳过此值,进行下一个循环;如果不等,则不连续,当前统计的连续序列长度置为1。见方法longestConsecutive2。
此方法,虽然看似时间复杂度为O(N),其实排序就占用了至少O(N),还是不是很理想的算法。

2.2 哈希表

定义一哈希表,key为数组中的元素,value为当前元素所在连续序列的长度。
对于不存在于哈希表中的元素:

  • 取出其左右相邻数已有的连续区间长度 left 和 right
  • 计算当前数的区间长度为:cur_length = left + right + 1
  • 根据 cur_length 更新最大长度 max_length 的值
  • 更新区间两端点的长度值

例如,key = 5, value = 3,意味着对于5来说,有一个长度为3的连续区间,5属于这个区间(不要纠结5这个元素到底在该区间的哪个位置) 具体来说,这个连续区间可能是[4, 6], [3, 5], [5,7]都是满足定义的,具体看nums里有哪些元素。

如果对于元素 num=5,在判断 !map.contains(num) 时,其不存在于哈希表中,即第一次遍历到5这个元素,则对于可能存在的连续序列,num-1若出现在序列当中,则其范围应为[num-value, num-1]. 比如:上述元素5,则4所在范围只能是[4-value, 4],如果不是,那5必在其中,不符合我们的循环条件。这里value表示4所对应的连续序列长度。

同样道理,对于6,其出现的范围只能是[6, 6+value];这里value表示6所对应的连续序列长度。详见代码中方法longestConsecutive。

接着需要将之前计算的合并长度进行赋值,并且只要赋值给端点就行了,这是因为整个子序列 [num-left, num+right] 中的元素都已经被访问过了所有的值都已经存储到了map里面,那么如果其他数字想要通过这个判断 !map.contains(num) ,这个数字只可能在这个子序列的左边或者右边.

我们还是以左边为例,当我们放入第num-left-1个数字的时候就需要知道我们的右边第num-left的子序列长度,而通过之前的计算 map[num - left] = cur_length我们可以知道第num-left为开头的最大子序列长度为cur_length, 可以看出左端点(num-left)的值只有其左边的数字用的上,那么他自己自然只需要存右边的子序列长度就可以了,右边同理。

2.3 HashSet

  • 通过HashSet将不重复的元素入库
  • 遍历数组,判断当前num减去1的元素是否已存在:
    • 如果不存在,并且num+当前连续序列最大长度的值存在于HashSet中,统计连续序列长度
    • 否则,跳过该元素。这里循环的条件目的就是找到连续序列的起始元素,找到后,才开始统计最大的连续序列长度

详见代码中方法longestConsecutive3。不过此算法由于用到HashSet,其时间复杂度不符合题目中所需O(N)的条件。

3.代码

class Solution {
    //1.先排序
    //2.连续序列差值为1,统计连续序列长度
    //3.否则,相等的话,继续循环遍历;不等,重新计数连续序列长度
    public int longestConsecutive2(int[] nums) {
        //判空
        if(null==nums || nums.length==0){
            return 0;
        }
        //只有一个
        if(1==nums.length){
            return 1;
        }
        //排序
        Arrays.sort(nums);
        //结果
        int maxLength=1;
        //初始最长连续序列长度
        int current=1;
        for(int i=1;i<nums.length;i++){
            //是否相差1
            if(nums[i]-nums[i-1]==1){
                current++;
                maxLength=Math.max(maxLength, current);
            }
            //相等
            else if(nums[i]==nums[i-1]){
                continue;
            }
            //不等,重新统计
            else{
                current=1;
            }
        }
        return maxLength;
    }


    public int longestConsecutive3(int[] nums) {
        // 遍历数组,构造哈希集合,去重记录出现过的数字
        HashSet<Integer> numSet = new HashSet<>();
        for (int num : nums) {
            numSet.add(num);
        }
        int maxLength=0;
        int currentLength=1;
        for(int num : nums){
            //当前数字不是其可能所在连续序列的最小值,则略过;否则向上循环寻找num+1,记录长度
            //如果当前num+当前最大长度不在哈希表里,那这次循环就不用看了
            if(!numSet.contains(num-1) && numSet.contains(num+maxLength)){
                currentLength=1;
                while(numSet.contains(num+1)){
                    currentLength++;
                    num++;
                }
                if(currentLength>maxLength){
                    maxLength=currentLength;
                }
            }
        }
        return maxLength;
    }


    public int longestConsecutive(int[] nums) {
        //定义map为num及其所在连续序列的长度
        Map<Integer, Integer> map=new HashMap<>();
        int left;
        int right;
        int currentLength;
        int maxLength=0;
        for(int num : nums){
            //不包含num
            if(!map.containsKey(num)){
                //对于第一次出现的num, num-1出现的范围只能是[num-left, num-1]
                left=map.getOrDefault(num-1, 0);
                //num+1出现的范围只能是[num+1, num+right]
                right=map.getOrDefault(num+1, 0);
                currentLength=left+right+1;
                if(currentLength>maxLength){
                    maxLength=currentLength;
                }
                //旁边的两个数 我已经相告了,这里对num保存的值不重要
                map.put(num, currentLength);
                //告诉左边的数字我的右边连续子序列长度是curLength(或者说只有他左边的数字需要他)
                map.put(num-left, currentLength);
                //告诉右边的数字我的左边连续子序列长度是cur_length
                map.put(num+right, currentLength);
            }
        }
        return maxLength;
    }
}
### 解题思路 LeetCode 第 674 题的目标是找到给定数组中的最长连续递增子序列的长度。此问题可以通过一次线性扫描来解决,时间复杂度为 O(n),空间复杂度可以优化到 O(1)[^1]。 #### 关键点分析 - **连续性**:题目强调的是“连续”,因此只需要比较相邻两个元素即可判断是否构成递增关系。 - **动态规划 vs 贪心算法**:虽然可以用动态规划的思想解决问题,但由于只需记录当前的最大值而无需回溯历史状态,贪心策略更为高效[^3]。 --- ### Python 实现 以下是基于贪心算法的 Python 实现: ```python class Solution: def findLengthOfLCIS(self, nums): if not nums: # 如果输入为空,则返回0 return 0 max_len = 1 # 至少有一个元素时,最小长度为1 current_len = 1 # 当前连续递增序列的长度初始化为1 for i in range(1, len(nums)): # 从第二个元素开始遍历 if nums[i] > nums[i - 1]: # 判断当前元素是否大于前一个元素 current_len += 1 # 是则增加当前长度 max_len = max(max_len, current_len) # 更新全局最大长度 else: current_len = 1 # 否则重置当前长度 return max_len # 返回最终结果 ``` 上述代码通过维护 `current_len` 和 `max_len` 来跟踪当前连续递增序列的长度以及整体的最大长度。 --- ### Java 实现 下面是等效的 Java 版本实现: ```java public class Solution { public int findLengthOfLCIS(int[] nums) { if (nums.length == 0) { // 处理边界情况 return 0; } int maxLength = 1; // 初始化最大长度 int currentLength = 1; // 初始化当前长度 for (int i = 1; i < nums.length; i++) { if (nums[i] > nums[i - 1]) { // 若满足递增条件 currentLength++; // 增加当前长度 maxLength = Math.max(maxLength, currentLength); // 更新最大长度 } else { currentLength = 1; // 不满足递增条件时重新计数 } } return maxLength; // 返回结果 } } ``` 该版本逻辑与 Python 类似,但在语法上更贴近 Java 的特性[^4]。 --- ### C++ 实现 对于 C++ 用户,下面是一个高效的解决方案: ```cpp #include <vector> #include <algorithm> // 使用 std::max 函数 using namespace std; class Solution { public: int findLengthOfLCIS(vector<int>& nums) { if (nums.empty()) { // 边界处理 return 0; } int result = 1; // 结果变量 int count = 1; // 当前连续递增序列长度 for (size_t i = 1; i < nums.size(); ++i) { if (nums[i] > nums[i - 1]) { // 检查递增条件 count++; result = max(result, count); } else { count = 1; // 重置计数器 } } return result; // 返回最终结果 } }; ``` 这段代码同样遵循了单次遍历的原则,并利用标准库函数简化了一些操作。 --- ### 小结 三种语言的核心思想一致,均采用了一种简单的线性扫描方式完成任务。这种方法不仅易于理解,而且性能优越,在实际应用中非常实用[^2]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值