零基础学习人工智能—Python—Pytorch学习(三)

前言

这篇文章主要两个内容。
一,把上一篇关于requires_grad的内容补充一下。
二,介绍一下线性回归。

关闭张量计算

关闭张量计算。这个相对简单,阅读下面代码即可。

print("============关闭require_grad==============")
x = torch.randn(3, requires_grad=True)
print(x)
x.requires_grad_(False)  # 关闭x的张量计算

print("关闭x的张量计算后的x:", x)  # 没有requires_grad属性了

x = torch.randn(3, requires_grad=True)
print("新的带张量计算的x:", x)
y = x.detach()  # 去出x的张量附加属性,返回普通张量
print("y没有张量属性:", y)
print("x还有张量属性:", x)
print("============区域内去除x的张量附加属性==============")
with torch.no_grad():
    y = x+2
    print("y没有张量属性:", y)
print("x还有张量属性:", x)
一个有趣的例子

代码1如下,代码可以正常运行。

x = torch.tensor(1.0)
y = torch.tensor(2.0)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

kiba518

赏个1毛钱吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值