【题目描述】
小 D 特别喜欢玩游戏。这一天,他在玩一款填数游戏。
这个填数游戏的棋盘是一个n×mn×m的矩形表格。玩家需要在表格的每个格子中填入一个数字(数字 00 或者数字 11),填数时需要满足一些限制。
下面我们来具体描述这些限制。
为了方便描述,我们先给出一些定义:
*我们用每个格子的行列坐标来表示一个格子,即(行坐标,列坐标)。(注意:行列坐标均从 00 开始编号)
*合法路径 P:一条路径是合法的当且仅当:
1.这条路径从矩形表格的左上角的格子(0,0)(0,0)出发,到矩形的右下角格子(n−1,m−1)(n−1,m−1)结束;
2.在这条路径中,每次只能从当前的格子移动到右边与它相邻的格子,或者从当前格子移动到下面与它相邻的格子。
例如:在下面这个矩形中,只有两条路径是合法的,它们分别是p1p1:(0,0)→(0,1)→(1,1)(0,0)→(0,1)→(1,1)和p2p2:(0,0)→(1,0)→(1,1)(0,0)→(1,0)→(1,1)。
第一次游戏;
第二次游戏:
输入样例:
3 4 2
0 1 1 1
0 1 1 0
0 1 0 0
3 2 1 2 2 2
1 2 2 3 2
输出样例:
2
-1
【数据范围】
对于 30%的数据,1 ≤ n, m ≤ 10,q = 1;
对于