大模型——智能模型新篇章:RAG + Fine-Tuning 混合增强策略

大模型——智能模型新篇章:RAG + Fine-Tuning 混合增强策略

在之前的探讨中,我们已经分别深入了解了RAG(检索增强生成)和 Fine-tuning(微调)这两种优化大型语言模型的方法,探讨了它们在不同业务场景下的适用性、优势及局限。然而,我们很少讨论将这两种技术结合起来会带来什么样的效果。实际上,RAG和Fine-
tuning并不是相互排斥的技术。之前讨论RAG的未来发展趋势时,我们提到一种实现路径是通过RAG利用外部知识,同时通过微调来实现对特定领域的适应。这样,我们就能在同一个模型中结合RAG和微调的优点:

  • 检索器 能够快速访问广泛和最新的外部数据;
  • 微调 能够深度定制模型以适应专业领域;
  • 生成器 则结合外部上下文和微调后的领域知识来生成响应。

通过智能地结合RAG、微调以及混合方法,我们有可能创造出下一代智能应用程序,这些应用在适当适应领域需求的同时,能够充分发挥大型语言模型(LLMs)的潜力。

1.1、RAG与微调结合破局LLMs的局限

大型语言模型在理解和生成人类式文本方面取得了显著成就,覆盖了广泛的领域。这些模型通过分析大量数据集中的模式,在预训练阶段获得了丰富的知识和强大的语言理解能力。然而,尽管LLMs表现出色,它们在特定领域的深入理解上仍有所欠缺,其知识可能不够深入或缺乏权威性,这在需要深厚专业知识的场景中尤为明显。

为了弥补这些不足,研究人员尝

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不二人生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值