
论文复现
文章平均质量分 85
kitsch0x97
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
论文复现_LibAM Base Line
在本次评估中,的基准方法主要是(通过 ISRD 的策略创建的变体由于本身不可直接与比较,LibAM 采用作为基准方法,在单一环境中的检测任务中可以轻松替换为。此外,还与其他方法进行了对比,如和。与依赖于常量特征的和相比,在处理结构化相似区域和复杂环境中的表现更为优越。与相比,通过将孤立函数连接成区域并进行结构相似性比较,以及利用解决重叠问题,显著提高了检测精度。因此,LibAM 提供了一个更为精确和全面的 TPL 检测方案,能够在不同环境和复杂情况下提供更高的检测准确性。原创 2025-01-13 20:24:56 · 239 阅读 · 0 评论 -
论文复现_How Machine Learning Is Solving the Binary Function Similarity Problem_IDA Script
在二进制分析领域,原创 2024-11-19 19:37:37 · 1096 阅读 · 0 评论 -
论文复现_How Machine Learning Is Solving the Binary Function Similarity Problem
包含生成数据集和提取特征的说明文件。主要文件和子文件夹如下:Dataset-1├── Dataset-1 creation.ipynb: 创建数据集├── Dataset-1 plots.ipynb: 展示数据集组成├── Dataset-1 sanity check.ipynb: 验证数据完整性│ ├── flowchart_Dataset-1.csv: 包括至少 5 个基本块的函数列表。原创 2024-11-18 23:28:22 · 1169 阅读 · 0 评论 -
论文复现_主流 Linux APP 编译方式调研
本调研的目标 Linux APP 均取自 Github 中的。音乐 (Music)原创 2024-08-17 14:20:38 · 627 阅读 · 0 评论 -
论文复现_从 CONAN 中收集 TPL 数据集
Conan是一个用于C++项目的开源包管理工具。它的主要目标是简化C++项目的依赖关系管理过程,使开发人员能够更轻松地集成、构建和分享C++库。其中有一些比较独特的功能,例如:版本管理、第三方库管理等。:本文首先 CONAN recipe,并从中提取出 1753 个 TPL 名称,这些 TPL 名称将用于后续的 TPL 依赖关系提取。之后,通过网络爬虫收集各 TPL 从在的依赖关系。最后以手动编译的方式,生成 TPL 对应的二进制文件。原创 2024-08-14 15:51:08 · 301 阅读 · 0 评论 -
论文复现_LibAM: An Area Matching Framework for Detecting Third-Party Libraries in Binaries
LibAM 是一个用于第三方库(Third Party Library,TPL)检测的区域匹配框架,该框架将独立的函数连接到函数调用图(Function Call Graph,FCG)上的函数区域(Function Area,FA),并通过比较这些 FA 的相似性来检测 TPL,从而显著减轻不同优化选项和架构的影响。LibAM 的原理图如下图所示。LibAM 的源代码可从下载,源代码的结构如下图所示。原创 2024-07-25 22:18:40 · 722 阅读 · 0 评论 -
论文复现_Asteria: Deep Learning-based AST-Encoding for Cross-platform Binary Code Similarity Detection
在Github上下载的代码,并对代码进行分析。这些代码可以实现三个功能,(1)二进制代码的 AST 的生成和预处理;(2)Tree-LSTM 模型的训练;(3)执行漏洞搜索任,代码的目录结构如下图所示。原创 2024-06-03 21:21:50 · 818 阅读 · 1 评论 -
论文复现_Ransomware Detection using Random Forest Technique
如今,勒索软件已成为计算世界的严重威胁,需要立即考虑以避免经济和道德勒索。因此,确实需要一种能够检测和阻止此类攻击的新方法。以往的检测方法大多采用动态分析技术,过程复杂。本研究提出了一种基于静态分析的勒索软件检测新方法。该方法的显着特点是通过使用Frequent Pattern Mining直接从原始字节中提取特征来省去反汇编过程,从而显着提高了检测速度。使用Gain Ratio技术进行特征选择,表明 1000 个特征是检测过程的最佳数量。原创 2024-05-09 00:16:19 · 1249 阅读 · 3 评论 -
论文复现_Improving ransomware detection based on portable executable header using xception convolutional
勒索软件攻击在 COVID-19 大流行期间显着增加,并且由于其高盈利能力,这种增长可能会持续下去。为了应对这些攻击,作者应用静态分析来检测勒索软件,方法是将可移植可执行 (PE) 头文件转换为顺序矢量模式的彩色图像,并通过 Xception 卷积神经网络 (CNN) 模型对这些图像进行分类。这种方法简化了特征提取,减少了处理负载,并且对规避技术和勒索软件的演变更具弹性。使用两个数据集评估所提出的方法在二分类任务与多分类任务中的表现(仅针对二分类任务进行复现)。原创 2024-05-09 19:31:48 · 1301 阅读 · 0 评论 -
论文复现_Ransomware Detection Based On Opcode Behavior Using K-Nearest Neighbors Algorithm
勒索软件是一种对用户信息隐私构成严重威胁的恶意软件。通过研究勒索软件的工作原理,我们也许能够识别其原子行为。作为回报,我们将能够在早期阶段更准确地检测勒索软件。在本文中,我们提出控制流图(CFG)作为一种提取操作码行为技术,结合 4-gram(4 个“单词”的序列)来提取操作码序列,并将其纳入使用 K 最近邻的木马勒索软件检测方法中( K-NN)算法。操作码CFG 4-gram可以充分体现勒索木马的详细行为特征。原创 2024-05-27 22:08:02 · 879 阅读 · 0 评论