机器学习入门:概念、方法与实践
1. 机器学习概述
机器学习是一组让计算机算法从现有数据中学习的技术,而非依赖硬编码决策。随着新数据的输入,算法的准确性会不断提高,人类或其他流程的干预也有助于提升其性能。机器学习主要分为以下三类:
- 无监督学习 :算法在数据中寻找模式,帮助用户获取洞察。例如,在线零售商通过分析用户数据,发现用户在特定季节对烹饪、旅行或家庭维修的兴趣增加,从而提前数周给出产品推荐。
- 监督学习 :数据中包含问题的“答案”。以在线零售商为例,如果用户在购买旅行套餐后购买了推荐的书籍和衣服,零售商可以将这些数据标记为“旅行购买”。当有新的服装购买数据时,算法可以预测用户可能要去度假,并提供航班和酒店建议。
- 强化学习 :算法根据结果添加奖励或惩罚。比如,用户购买并退回某产品,算法会在相关数据中插入负分,帮助算法在未来做出更好的决策。此外,直接询问用户对推荐的反馈也能用于调整推荐算法。
机器学习算法使用的“学习”信息称为训练集。对于监督学习,训练集包含一个或多个标签特征。当有新的未标记数据时,运行算法并期望其匹配预期结果。通过算法拟合训练数据进行预测,就创建了机器学习模型。常见的测试方法是随机选择50%的标记数据作为训练集,其余数据作为测试集,不断调整算法以提高准确性。
2. 猫咪数据处理
以猫咪数据为例,首先对数据进行清洗和预处理:
import pandas as pd
df = pd.read_csv("src