基于分解模糊集的风险评估新方法解析
1. 引言
风险评估在职业健康与安全领域至关重要,它能帮助识别工作场所的潜在危害,评估危害可能造成的伤害的可能性和严重程度,并确定适当的控制措施。然而,评估危害的可能性和严重程度并非易事,由于缺乏准确评估所需的统计数据,评估过程往往依赖专家意见,这就导致了评估的主观性。而且,专家的评估可能会受到乐观或悲观观点的影响,同时危害的严重程度也存在多种可能结果,这些都带来了评估的不确定性。为解决这些问题,本文将介绍一种基于分解模糊集的Fine - Kinney新方法。
2. 传统方法回顾
传统的FMEA方法通过考虑可能性、严重性和可检测性等因素来评估风险,但由于事故可能产生从轻微伤害到致命事故的广泛结果,准确评估这些因素具有挑战性。而Fine - Kinney方法是一种定量风险评估方法,它在1976年由Fine和Kinney开发,通过考虑可能性(l)、频率(f)和后果(c)等风险因素来评估风险,使用公式(R = l × f × c)计算风险得分,并根据得分对风险进行优先级排序。以下是该方法使用的语言量表:
| 可能性(L) | 值 | 频率(F) | 值 | 后果(C) | 值 |
| — | — | — | — | — | — |
| 可能被预测 | 10 | 持续 | 10 | 灾难 | 100 |
| 很可能 | 6 | 频繁(每日) | 6 | 灾害 | 40 |
| 不常见但可能 | 3 | 偶尔(每周) | 3 | 非常严重 | 15 |
| 稍有可能 | 1 | 不常见(每月) | 2 | 严重 | 7 |
| 极不可能 | 0.5 | 罕见(每年几次) | 1 |