故障诊断 | VMD-CNN-LSTM西储大学轴承故障诊断附MATLAB代码

效果一览

在这里插入图片描述

在这里插入图片描述

基于VMD与CNN - LSTM的滚动轴承故障诊断

摘要

本研究旨在利用变分模态分解(VMD)与卷积神经网络 - 长短期记忆网络(CNN - LSTM)实现滚动轴承故障诊断。在数据处理阶段,从西储大学官方网站下载滚动轴承数据集,并通过设定滑动窗口、故障样本点个数及故障类型样本量等参数,对数据进行滑窗操作并整合。在特征提取方面,选取五种适应度函数优化VMD参数,采用效率较高的智能算法OCSSA确定最佳IMF分量,并计算9个指标构建特征向量。故障分类则基于CNN - LSTM模型,通过训练集和测试集验证模型性能。研究结果表明,所提方法能够有效提高滚动轴承故障诊断的准确率和效率,为实际工程应用提供了有价值的参考。

关键词: 滚动轴承;故障诊断;VMD;CNN - LSTM;特征提取

1. 引言
1.1 研究背景

滚动轴承作为机械设备中的核心部件,其运行状态

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

机器学习之心

谢谢支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值