目录
效果一览
基于VMD与CNN - LSTM的滚动轴承故障诊断
摘要
本研究旨在利用变分模态分解(VMD)与卷积神经网络 - 长短期记忆网络(CNN - LSTM)实现滚动轴承故障诊断。在数据处理阶段,从西储大学官方网站下载滚动轴承数据集,并通过设定滑动窗口、故障样本点个数及故障类型样本量等参数,对数据进行滑窗操作并整合。在特征提取方面,选取五种适应度函数优化VMD参数,采用效率较高的智能算法OCSSA确定最佳IMF分量,并计算9个指标构建特征向量。故障分类则基于CNN - LSTM模型,通过训练集和测试集验证模型性能。研究结果表明,所提方法能够有效提高滚动轴承故障诊断的准确率和效率,为实际工程应用提供了有价值的参考。
关键词: 滚动轴承;故障诊断;VMD;CNN - LSTM;特征提取
1. 引言
1.1 研究背景
滚动轴承作为机械设备中的核心部件,其运行状态