基于结构熵权-云模型的铸铁浴缸生产工艺安全评价
一、 核心方法概述
结构熵权法 (Structural Entropy Weight Method):
目的: 客观地确定评价体系中各指标的权重,避免人为主观因素的影响。
原理: 基于“熵”的概念。熵值越大,表明指标数据的离散程度越高,该指标在综合评价中对结果的影响就越大,即权重越大。结构熵权法通过专家问卷(典型排序)收集主观意见,再通过熵计算将其转化为客观权重,兼具主观意图和客观数据支撑。
云模型 (Cloud Model):
目的: 对安全状况进行定性定量转换和综合评价,处理评价中的模糊性(定性概念的不确定性)和随机性(隶属度的不确定性)。
原理: 由期望(Ex)、熵(En) 和超熵(He) 三个数字特征来表征一个定性概念。
Ex: 云滴在论域空间分布的平均值,是概念的中心值。
En: 概念的模糊度,代表可接受论域的范围。
He: 熵的熵,代表云滴的离散程度(随机性)。
在评价中的作用: 建立每个安全等级(如“安全”、“较安全”、“一般”、“较危险”、“危险”)的标准云模型,并将待评对象的指标数据通过逆向云发生器或确定度计算,映射到这些标准云上,最终综合确定其安全等级。
二、 评价指标体系构建
这是评价的基础。基于铸铁浴缸生产工艺流程(主要包括:熔炼、浇注、成型、清理、打磨、涂装等),结合“人、机、料、法、环”5个维度,构建多层次安全评价指标体系。
目标层(A): 铸铁浴缸生产工艺安全水平 (A)
准则层(B): (示例)
B1 人员因素 (培训、操作规范、防护用品佩戴等)
B2 设备设施因素 (熔炼炉、模具、起重设备、通风除尘系统等安全性)
B3 物料与管理因素 (生铁、焦炭等原料管理,安全制度、应急预案等)
B4 工艺方法因素 (熔炼温度、浇注速度、喷涂工艺参数等)
B5 环境因素 (作业场所温度、粉尘浓度、噪音水平等)
指标层©: 为每个准则层设计具体、可测量的指标。
C11: 特种作业人员持证上岗率 (%)
C12: 员工安全培训合格率 (%)
C21: 熔炼炉温度报警系统完好率 (%)
C22: 起重设备定期检验合格率 (%)
C31: 车间内粉尘浓度 (mg/m³)
C32: 作业场所噪音水平 (dB(A))
C41: 浇注区地面防渗漏与干燥状况 (定性,可通过专家打分量化)
C42: 涂装作业挥发性有机物浓度 (ppm)
… (可根据实际情况扩充)
三、 实施步骤
第一步:数据收集与处理
通过现场检测、传感器数据、档案记录、专家打分问卷等方式,收集指标层©各指标的数据。
对定量指标(如粉尘浓度)进行归一化处理,将其统一到[0,1]区间。对于成本型指标(越小越好,如粉尘浓度)和效益型指标(越大越好,如合格率)采用不同的归一化公式。
对定性指标(如管理制度完善度),采用专家打分法(如1-10分)进行量化,然后进行归一化。
第二步:基于结构熵权法计算指标权重
专家典型排序: 邀请m位安全专家,对同一层级下的指标重要性进行排序(例如,在B1准则下,认为C11比C12重要)。
形成“典型排序”矩阵: 收集所有专家的排序意见。
计算“平均认识度”: 将排序转换为相应的分数(如第1名得n分,第2名得n-1分…),并计算每个指标的平均得分。
计算“认识度的模糊性”: 即熵值。平均得分越分散,熵值越大。
计算“本质认识度”: 对平均认识度进行归一化,消除模糊性后的结果。
计算权重: 将本质认识度归一化,即得到各指标的客观权重W_i。
第三步:建立安全等级标准云模型
将安全状况划分为5个等级:Ⅰ级(安全)、Ⅱ级(较安全)、Ⅲ级(一般)、Ⅳ级(较危险)、Ⅴ级(危险)。
确定论域范围,通常为[0,1](对应归一化后的数据)。
采用黄金分割法生成每个等级的标准云数字特征(Ex, En, He)。假设论域为[Xmin, Xmax] = [0,1]:
Ⅰ级(安全)云: Ex1 = 1.0, En1 = 0.0615, He1 = 0.01 (通常设He为En的十分之一到五分之一)
Ⅱ级(较安全)云: Ex2 = 0.691, En2 = 0.038, He2 = 0.006
Ⅲ级(一般)云: Ex3 = 0.5, En3 = 0.023, He3 = 0.004
Ⅳ级(较危险)云: Ex4 = 0.309, En4 = 0.038, He4 = 0.006
Ⅴ级(危险)云: Ex5 = 0.0, En5 = 0.0615, He5 = 0.01
第四步:计算综合评价云和确定安全等级
生成各指标的评估云: 对于每个指标C_i的实测值x_i,将其视为一个云滴。通过逆向云发生器,可以由一组x_i计算出一个云模型特征(Ex_i, En_i, He_i)。或者,更简单的方法是直接计算该实测值x_i隶属于各个标准云的确定度μ_k(x_i)。
μ_k(x_i) = exp(-(x_i - Ex_k)^2 / (2 * (En_k’)^2)),其中En_k’是一个以En_k为期望、He_k为标准差的正态随机数。
综合计算:
方案A (综合云算法): 将各指标的云模型特征(Ex_i, En_i, He_i)按其权重W_i进行综合,计算得到总体的综合评价云数字特征(Ex_total, En_total, He_total)。
Ex_total = sum(W_i * Ex_i)
En_total = sum(W_i * En_i)
He_total = sum(W_i * He_i)
方案B (确定度加权法): 先计算每个指标x_i对每个标准等级k的确定度μ_k(x_i),然后按权重加权平均,得到总体对每个等级k的综合确定度μ_k。
μ_k = sum(W_i * μ_k(x_i))
确定最终安全等级:
方案A: 将生成的综合云(Ex_total, En_total, He_total)与标准云进行比较,看其最接近哪个标准云的中心Ex,即“云重心”所在等级。
方案B: 比较综合确定度μ_k,遵循“最大确定度原则”,选择μ_k值最大的那个等级作为最终的安全评价等级。Level = argmax(μ_k)
四、 应用示例(简化的)
假设只评价“环境因素(B5)”,其下有2个指标:粉尘浓度C31(权重0.6)和噪音水平C32(权重0.4)。
实测值:C31归一化后为0.3(粉尘浓度较高),C32归一化后为0.8(噪音控制较好)。
计算各指标对5个标准等级的确定度(通过云模型公式计算,此处省略计算过程,假设结果如下):
C31(0.3): 对Ⅴ级μ=0.8, 对Ⅳ级μ=0.4, 对其他级μ≈0。
C32(0.8): 对Ⅱ级μ=0.7, 对Ⅰ级μ=0.5, 对Ⅲ级μ=0.3。
加权计算总确定度:
μ_Ⅴ = 0.60.8 + 0.40 = 0.48
μ_Ⅳ = 0.60.4 + 0.40 = 0.24
μ_Ⅲ = 0.60 + 0.40.3 = 0.12
μ_Ⅱ = 0.60 + 0.40.7 = 0.28
μ_Ⅰ = 0.60 + 0.40.5 = 0.20
结果:μ_Ⅴ=0.48 最大,因此该“环境因素”评价结果为 Ⅴ级(危险)。主要原因是粉尘浓度超标严重,尽管噪音控制较好,但整体风险极高。
五、 优势与价值
科学性: 综合了主观经验(专家排序)和客观数据(熵权、实测值),权重分配更合理。
精准性: 云模型能同时处理模糊性和随机性,比传统的模糊综合评价法更能反映安全状态的本质不确定性,评价结果更精准。
直观性: 最终结果既可以是一个确定的等级,也可以通过云图可视化呈现,评价结果的整体分布和稳定性一目了然。
实用性: 不仅能得出整体结论,还能通过指标层分析找到工艺安全中的薄弱环节(如本例中的粉尘浓度),为针对性整改提供明确方向。
六、 结论
将结构熵权-云模型应用于铸铁浴缸生产工艺安全评价,是方法论上的一次有效升级。它构建了一套从指标构建、权重计算到综合评价的完整、科学、可操作的体系,能够帮助企业更全面、更深刻地认识生产过程中的安全风险,实现从“事后处理”到“事前预警”的转变,全面提升安全管理水平。