前言
提示:需要docker-compose环境:
请先自行安装 docker ,以及docker-compose
一、编排 docker-compose.yml
version: '2'
services:
zookeeper:
image: wurstmeister/zookeeper
ports:
- "2181:2181"
volumes:
- /etc/localtime:/etc/localtime
kafka:
image: wurstmeister/kafka:2.13-2.8.1
ports:
- "9092:9092"
environment:
KAFKA_BROKER_ID: 0
KAFKA_ZOOKEEPER_CONNECT: host.docker.internal:2181
KAFKA_ADVERTISED_LISTENERS: PLAINTEXT://host.docker.internal:9092
KAFKA_LISTENERS: PLAINTEXT://0.0.0.0:9092
volumes:
- /var/run/docker.sock:/var/run/docker.sock
提示:当前的kafka镜像是2.6.0版本的kafka
host.docker.internal 映射的是宿主机IP
执行
docker-compose up -d
自此基本完结安装。
集成Springboot
<!-- 引入 Spring-Kafka 依赖 -->
<!-- 已经内置 kafka-clients 依赖,所以无需重复引入 -->
<dependency>
<groupId>org.springframework.kafka</groupId>
<artifactId>spring-kafka</artifactId>
<version>2.3.3.RELEASE</version>
</dependency>
application.properties
# 应用名称
spring.application.name=kafka-produce
server.port=8114
###########【Kafka集群】###########
spring.kafka.bootstrap-servers=宿主机IP:9092
###########【初始化生产者配置】###########
# 重试次数
spring.kafka.producer.retries=0
# 应答级别:多少个分区副本备份完成时向生产者发送ack确认(可选0、1、all/-1)
spring.kafka.producer.acks=1
# 批量大小
spring.kafka.producer.batch-size=16384
# 提交延时
spring.kafka.producer.properties.linger.ms=0
# 当生产端积累的消息达到batch-size或接收到消息linger.ms后,生产者就会将消息提交给kafka
# linger.ms为0表示每接收到一条消息就提交给kafka,这时候batch-size其实就没用了
?
# 生产端缓冲区大小
spring.kafka.producer.buffer-memory = 33554432
# Kafka提供的序列化和反序列化类
spring.kafka.producer.key-serializer=org.apache.kafka.common.serialization.StringSerializer
spring.kafka.producer.value-serializer=org.apache.kafka.common.serialization.StringSerializer
# 自定义分区器
# spring.kafka.producer.properties.partitioner.class=com.felix.kafka.producer.CustomizePartitioner
###########【初始化消费者配置】###########
# 默认的消费组ID
spring.kafka.consumer.properties.group.id=wind1
# 是否自动提交offset
spring.kafka.consumer.enable-auto-commit=false
# 提交offset延时(接收到消息后多久提交offset)
spring.kafka.consumer.auto.commit.interval.ms=1000
# 当kafka中没有初始offset或offset超出范围时将自动重置offset
# earliest:重置为分区中最小的offset;
# latest:重置为分区中最新的offset(消费分区中新产生的数据);
# none:只要有一个分区不存在已提交的offset,就抛出异常;
spring.kafka.consumer.auto-offset-reset=earliest
# 消费会话超时时间(超过这个时间consumer没有发送心跳,就会触发rebalance操作)
spring.kafka.consumer.properties.session.timeout.ms=120000
# 消费请求超时时间
spring.kafka.consumer.properties.request.timeout.ms=180000
# Kafka提供的序列化和反序列化类
spring.kafka.consumer.key-deserializer=org.apache.kafka.common.serialization.StringDeserializer
spring.kafka.consumer.value-deserializer=org.apache.kafka.common.serialization.StringDeserializer
# 消费端监听的topic不存在时,项目启动会报错(关掉)
spring.kafka.listener.missing-topics-fatal=false
# 设置批量消费
# spring.kafka.listener.type=batch
# 批量消费每次最多消费多少条消息
spring.kafka.consumer.max-poll-records=500
最后自行去构建,消息生产者和消费者即可。
参考了挺多文章,如觉得有侵权,请联系